Literature Survey

Chromatographic Resolution of Chiral Lipids

 

The development of chiral stationary phases for HPLC together with the pioneering work of W.H. Pirkle and colleagues have revolutionized the resolution of chiral compounds in general. Lipid analysts have not been slow to exploit the technique.

The following references were collected as part of our regular literature reviews for our own research purposes. They cover the years 1990 onwards. For the earlier literature, I recommend my review, which is now available online at this site -

Christie, W.W. The chromatographic resolution of chiral lipids. In Advances in Lipid Methodology - One, pp. 121-148 (1992) (edited by W.W. Christie, Oily Press, Ayr).

I cannot claim to have covered the subject exhaustively here, but I have done my best. References are listed alphabetically by the first author of a paper, but not necessarily chronologically by that author.

  • Abdel-Mawgoud, A.M., Lepine, F. and Deziel, E. A chiral high-performance liquid chromatography-tandem mass spectrometry method for the stereospecific analysis of enoyl-coenzyme A hydratases/isomerases. J. Chromatogr. A, 1306, 37-43 (2013).
  • Adam,W., Boland,W., Hartmann-Schreier,J, Humpf,H.U., Lazarus,M., Saffert,A., Saha-Moller,C.R. and Schreier,P. alpha-Hydroxylation of carboxylic acids with molecular oxygen catalyzed by the alpha oxidase of peas (Pisum sativum): a novel biocatalytic synthesis of enantiomerically pure (R)-2-hydroxy acids. J. Am. Chem. Soc., 120, 11044-11048 (1998).
  • Agren, J.J. and Kuksis,A. Analysis of diastereomeric DAG naphthylethylurethanes by normal-phase HPLC with on-line electrospray MS. Lipids, 37, 613-619 (2002).
  • Agren, J.J., Ravandi,A., Kuksis,A. and Steiner,G. Structural and compositional changes in very low density lipoprotein triacylglycerols during basal lipolysis. Eur. J. Biochem., 269, 6223-6232 (2002).
  • Akasaka, K. and Ohrui,H. Chiral discrimination of branched-chain fatty acids by reversed-phase HPLC after labeling with a chiral fluorescent conversion reagent. Biosci. Biotechn. Biochem., 68, 153-158 (2004).
  • Akasaka, K. and Ohrui,H. Enantiomeric separation of branched fatty acids after conversion with trans-2-(2,3-anthracenedicarboximido)cyclohexanol, a highly sensitive chiral fluorescent conversion reagent. Biosci. Biotechn. Biochem., 63, 1209-1215 (1999).
  • Akasaka, K., Imaizumi,K. and Ohrui,H. Enantiomeric separation of branched fatty acids having chiral centers remote from the carboxyl group by labelling with chiral fluorescent derivatization reagents. Enantiomer, 3, 169-174 (1998).
  • Akasaka, K., Imaizumi,K. and Ohrui,H. Enantiomeric separation of branched fatty acids having chiral centers remote from the carboxyl group by derivatization with chiral fluorescent-labelling reagents. Bunseki Kagaku, 48, 1085-1094 (1999).
  • Akasaka, K., Meguro,H. and Ohrui,H. Enantiomeric separation of carboxylic acids having chiral centers remote from the carboxyl group by labelling with a chiral fluorescent derivatization reagent. Tetrahedron Letts., 38, 6853-6856 (1997).
  • Akasaka, K., Shichijyukari,S., Matsuoka,S., Murata,M., Meguro,H. and Ohrui,H. Absolute configuration of a ceramide with a novel branched-chain fatty acid isolated from the epiphytic dinoflagellate, Coolia monotis. Biosci. Biotechn. Biochem., 64, 1842-1846 (2000).
  • Akasaka, K., Shichijyukari,S., Meguro,H. and Ohrui,H. Determination of the absolute configurations of the anteiso acid moieties of glycoglycerolipid S365A isolated from Corynebacterium aquaticum. Biosci. Biotechn. Biochem., 66, 1719-1722 (2002).
  • Allenmark, S. and Ohlsson,A. Studies of the heterogeneity of a Candida cylindracea (rugosa) lipase: monitoring of esterolytic activity and enantioselectivity by chiral liquid chromatography. Biocatalysis, 6, 211-221 (1992).
  • Ando,Y. and Kobayashi,S. Positional distribution of docosahexaenoic acid in triacyl-sn-glycerols of rotifers Brachionus plicatilis enriched with fish oil fatty acid ethyl esters. Aquaculture Res., 35, 1391-1394 (2004).
  • Ando,Y. and Oomi,Y. Positional distribution of highly unsaturated fatty acids in triacyl-sn-glycerols of Artemia nauplii enriched with docosahexaenoic acid ethyl ester. Lipids, 36, 733-740 (2001).
  • Ando,Y. and Takagi,T. Micro method for stereospecific analysis of triacyl-sn-glycerols by chiral-phase HPLC. J. Am. Oil Chem. Soc., 70, 1047-1049 (1993).
  • Ando,Y., Nishimura,K., Aoyanagi,N. and Takagi,T. Stereospecific analysis of fish oil triacyl-sn-glycerols. J. Am. Oil Chem. Soc., 69, 417-424 (1992).
  • Ando,Y., Ota,T., Matsuhira,Y. and Yazawa,K. Stereospecific analysis of triacyl-sn-glycerols in docosahexaenoic acid-rich fish oils. J. Am. Oil Chem. Soc., 73, 483-487 (1996).
  • Ando,Y., Satake,M. and Takahashi,Y. Reinvestigation of positional distribution of fatty acids in docosahexaenoic acid-rich fish oil triacyl-sn-glycerols. Lipids, 35, 579-582 (2000).
  • Ando,Y., Shimoyama,A. and Ota,T. Changes in positional distribution of fatty acids in dorsal muscle triacyl-sn-glycerols from chum salmon, Oncorhynchus keta, at spawning season. Comp. Biochem. Physiol. B, 113, 89-93 (1996).
  • Andrikopoulos,N.K. Chromatographic and spectroscopic methods in the analysis of triacylglycerol species and regiospecific isomers of oils and fats. Crit. Rev. Food Sci. Nutr., 42, 473-505 (2002).
  • Arsene,C. and Schulz,S. Cyclic chiral silyl derivatives for the determination of the absolute configuration of aliphatic diols by gas chromatography. Org. Letts, 4, 2869-2871 (2002).
  • Asai,T., Hara,N., Kobayashi,S., Kohshima,S. and Fujimoto,Y. Acylglycerols (=glycerides) from the glandular trichome exudate on the leaves of Paulownia tomentosa. Helv. Chim. Acta, 92, 1473-1494 (2009).
  • Azerad,R., Boucher,J.L., Dansette,P. and Delaforge,M. HPLC separation of 11-hydroxylauric acid enantiomers. Application to the determination of the stereochemistry of microsomal lauric acid (w-1)hydroxylation. J. Chromatogr. A, 498, 293-302 (1990).
  • Baba,N., Tateno,K., Iwasa,J. and Oda,J. Lipase-catalysed kinetic resolution of racemic methyl 13-hydroperoxy-9Z,11E-octadecadienoate in an organic solvent. Agric. Biol. Chem., 54, 3349-3350 (1990).
  • Baer,A.N., Costello,P.B. and Brash,F.A. Stereospecificity of the hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids produced by cultured bovine endothelial cells. Biochim. Biophys. Acta, 1085, 45-52 (1991).
  • Baer,A.N., Costello,P.B. and Green,F.A. Stereospecificity of the products of the fatty acid oxygenases derived from psoriatic scales. J. Lipid Res., 32, 341-347 (1991).
  • Baer,A.N., Costello,P.B. and Green,F.A. Free and esterified 13(R,S)-hydroxyoctadecadienoic acids: principal oxygenase products in psoriatic skin scales. J. Lipid Res., 31, 125-130 (1990).
  • Baer,A.N., Costello,P.B. and Green,F.A. Characterization of the chirality of the monohydroxyeicosatetraenoic acids produced by rat basophilic leukemia cells. Biochem. Biophys. Res. Commun., 169, 332-338 (1990).
  • Batrakov,S.G., Nikitin,D.I., Sheichenko,V.I. and Ruzhitsky,A.O. A novel sulfonic-acid analogue of ceramide is the major extractable lipid of the gram-negative marine bacterium Cyclobacterium marinus WH. Biochim. Biophys. Acta, 1392, 79-91 (1998).
  • Bayer,M., Mosandl,A. and Thaci,D. Improved enantioselective analysis of polyunsaturated hydroxy fatty acids in psoriatic skin scales using high-performance liquid chromatography. J. Chromatogr. B, 819, 323-328 (2005).
  • Bedke,D.K., Shibuya,G.M., Pereira,A., Gerwick,W.H., Haines,T.H. and Vanderwal,C.D. Relative stereochemistry determination and synthesis of the major chlorosulfolipid from Ochromonas danica. J. Am. Chem. Soc., 131, 7570-7572 (2009).
  • Bednar,M.M., Gross,C.E., Balazy,M.K., Belosludtsev,Y., Colella,D.T., Falck,J.R. and Balazy,M. 6(R)-hydroxy-5,8,11,14-eicosatetraenoic acid, a new arachidonate metabolite in human polymorphonuclear leukocytes. Biochem. Pharmacol., 60, 447-455 (2000).
  • Bezard,J.A. and Sempore,B.G. Structural analysis of peanut oil triacylglycerols. In: New Trends in Lipid and Lipoprotein Analyses, pp. 106-132 (ed. J.-L. Sebedio and E.G. Perkins, AOCS Press, Champaign, USA) (1995).
  • Blee, E. and Schuber,F. Stereochemistry of the epoxygenation of fatty acids catalyzed by soybean peroxygenase. Biochem. Biophys. Res. Commun., 173, 1354-1360 (1990).
  • Blee, E. and Schuber,F. Stereocontrolled hydrolysis of the linoleic acid monoepoxide regioisomers catalysed by soybean epoxide hydrolase. Eur. J. Biochem., 230, 229-234 (1995).
  • Boeglin, W.E., Itoh,A., Zheng,Y.X., Coffa,G., Howe,G.A. and Brash,A.R. Investigation of substrate binding and product stereochemistry issues in two linoleate 9-lipoxygenases. Lipids, 43, 979-987 (2008).
  • Boukhchina, S., Gresti,J., Kallel,H. and Bezard,J. Stereospecific analysis of TAG from sunflower seed oil. J. Am. Oil Chem. Soc., 80, 5-8 (2003).
  • Brash, A.R. and Hawkins,D.J. HPLC for chiral analysis of eicosenoids. Methods Enzymol., 187, 187-195 (1990).
  • Brash, A.R., Boeglin,W.E., Capdevila,J.H., Yeola,S. and Blair,I.A. 7-HETE, 1O-HETE and 13-HETE are major products of NADPH-dependent arachidonic-acid metabolism in rat liver microsomes - analysis of their stereochemistry, and the stereochemistry of their acid-catalyzed rearrangement. Arch. Biochem. Biophys., 321, 485-492 (1995).
  • Brash, A.R., Boeglin, W.E., Stec, D.F., Voehler, M., Schneider, C. and Cha, J.K. Isolation and characterization of two geometric allene oxide isomers synthesized from 9S-hydroperoxylinoleic acid by cytochrome P450 CYP74C3: stereochemical assignment of natural fatty acid allene oxides. J. Biol. Chem., 288, 20797-20806 (2013).
  • Bringezu, F., Dobner,B., Stritzel,R., Elsner,B. and Nuhn,P. Preparative separation of the diastereomers of methyl branched-chain phosphatidylcholines. J. Chromatogr. A, 724, 367-372 (1996).
  • Brodowsky, I.D. and Oliw,E.H. Metabolism of 18:2(n-6), 18:3(n-3), 20:4(n-6) and 20:5(n-3) by the fungus Gaeumannomyces graminis: identification of metabolites formed by 8-hydroxylation and by w2 and w3 oxygenation. Biochim. Biophys. Acta, 1124, 59-65 (1992).
  • Brodowsky, I.D. and Oliw,E.H. Biosynthesis of 8-R-hydroperoxylinoleic acid by the fungus Laetisaria arvalis. Biochim. Biophys. Acta, 1168, 68-72 (1993).
  • Brooks, C.J.W., Cole,W.J. and Anderson,R.A. Analytical GC separation of diastereomeric tert.-butylmethoxyphenylsilyl ethers. J. Chromatogr. A, 514, 305-308 (1990).
  • Brunnstrom, A., Hamberg,M., Griffiths,W.J., Mannervik,B. and Claesson,H.E. Biosynthesis of 14,15-hepoxilins in human L1236 Hodgkin lymphoma cells and eosinophils. Lipids, 46, 69-79 (2011).
  • Bugla, J., Wandzik,I. and Szeja,W. High-performance liquid chromatography separation of glycerol derivatives on a chiral stationary phase. Acta Chromatographica, 15, 173-182 (2005).
  • Butovich,I.A., Lukyanova,S.M. and Bachmann,C. Dihydroxydocosahexaenoic acids of the neuroprotectin D family: synthesis, structure, and inhibition of human 5-lipoxygenase. J. Lipid Res., 47, 2462-2474 (2006).
  • Camacho,P.L., Geiger,E., Vigh,G., Webster,R. and Thompson,D.H. Separation of the enantiomeric intermediates of some platelet-activating factor analogues on a naphthylalanine-type Pirkle column. J. Chromatogr. A, 506, 611-616 (1990).
  • Capdevila,J.H., Dishman,E., Karara,A. and Falck,J.R. Cytochrome P450 arachidonic acid expoxygenase - stereochemical characterization of epoxyeicosatrienoic acids. Methods Enzymol., 206, 441-453 (1991).
  • Capdevila,J.H., Wei,S., Kumar,A., Kobayashi,J., Snapper,J.R., Zeldin,D.C., Bhatt,R.K. and Falck,J.R. Resolution of dihydroxyeicosanoates and of dihydroxyeicosatrienoates by chiral phase chromatography. Anal. Biochem., 207, 236-240 (1992).
  • Cardillo,R., Fronza,G., Fuganti,C., Grasselli,P., Mele,A., Pizzi,D., Allegrone,G., Barbeni,M. and Pisciotta,A. Stereochemistry of the microbial generation of delta-decanolide, gamma-dodecanolide, and gamma-nonanolide from C18 13-hydroxy, C18 10-hydroxy, and C19-14-hydroxy unsaturated fatty acids. J. Org. Chem., 56, 5237-5239 (1991).
  • Carriere,F., Rogalska,E., Cudrey,C., Ferrato,F., Laugier,R. and Verger,R. In vivo and in vitro studies on the stereoselective hydrolysis of tri- and diglycerides by gastric and pancreatic lipases. Bioorg. Med. Chem., 5, 429-435 (1997).
  • Chandler,I.C., Quinlan,P.T. and McNeill,G.P. Lipase-catalyzed synthesis of chiral triglycerides. J. Am. Oil Chem. Soc., 75, 1513-1518 (1998).
  • Chen, P., Fenet,B., Michaud,S., Tomczyk,N., Vericel,E., Lagarde,M. and Guichardant,M. Full characterization of PDX, a neuroprotectin/protectin D1 isomer, which inhibits blood platelet aggregation. FEBS Letts, 583, 3478-3484 (2009).
  • Christie, W.W. Silver ion and chiral chromatography in the analysis of triacylglycerols. Prog. Lipid Res., 33, 9-18 (1994).
  • Christie, W.W. Methods for stereospecific analysis of triacyl-sn-glycerols In: 'Contemporary Lipid Analysis, 2nd Symposium Proceedings', pp. 63-71 (edited by N.U. Olsson & B.G. Herslof, LipidTeknik, Stockholm) (1992).
  • Christie, W.W. The chromatographic resolution of chiral lipids. In: 'Advances in Lipid Methodology - One' (edited by W.W. Christie, Oily Press, Ayr), pp. 121-148 (1992).
  • Christie, W.W. and Han, X. Lipid Analysis - Isolation, Separation, Identification and Lipidomic Analysis (4th edition), 446 pages (Oily Press, Bridgwater, U.K. and Woodhead Publishing Ltd, Cambridge, U.K.) (2010) - Woodhead Publishing Ltd.
  • Christie, W.W., Nikolova-Damyanova,B., Laakso,P. and Herslof,B. Stereospecific analysis of triacyl-sn-glycerols via resolution of diastereomeric diacylglycerol derivatives by HPLC on silica. J. Am. Oil Chem. Soc., 68, 695-701 (1991).
  • Coffa, G., Imber,A.N., Maguire,B.C., Laxmikanthan,G., Schneider,C., Gaffney,B.J. and Brash,A.R. On the relationships of substrate orientation, hydrogen abstraction, and product stereochemistry in single and double dioxygenations by soybean lipoxygenase-1 and its Ala542Gly mutant. J. Biol. Chem., 280, 38756-38766 (2005).
  • Cossignani,L., Luneia,R., Damiani,P., Simonetti,M.S., Riccieri,R. and Tiscornia,E. Analysis of isomeric diacylglycerolic classes to evaluate the quality of olive oil in relation to storage conditions. Eur. Food Res. Technol., 224, 379-383 (2007).
  • Costantino,V., Fattorusso,E., Imperatore,C. and Mangoni,A. Glycolipids from sponges. 13.(1) clarhamnoside, the first rhamnosylated alpha-galactosylceramide from Agelas clathrodes. Improving spectral strategies for glycoconjugate structure determination. J. Org. Chem., 69, 1174-1179 (2004).
  • Croes,K., Casteels,M., Dieuaide-Noubhani,M., Mannaerts,G.P. and Van Veldhoven,P.P. Stereochemistry of the alpha-oxidation of 3-methyl-branched fatty acids in rat liver. J. Lipid Res., 40, 601-609 (1999).
  • Cryle,M.J. and De Voss,J.J. Facile determination of the absolute stereochemistry of hydroxy fatty acids by GC: application to the analysis of fatty acid oxidation by a P450(BM3) mutant. Tetrahedron-Asymmetry, 18, 547-551 (2007).
  • Cryle,M.J., Matovic,N.J. and De Voss,J.J. The stereochemistry of fatty acid hydroxylation by cytochrome P450(BM3) . Tetrahedron Letts, 48, 133-136 (2007).
  • D'Acquarica,I., Gasparrini,F., Misiti,D., Villani,C., Carotti,A., Cellamare,S. and Muck,S. Direct chromatographic resolution of carnitine and O-acylcarnitine enantiomers on a teicoplanin-bonded chiral stationary phase. J. Chromatogr. A, 857, 145-155 (1999).
  • Damiani, P., Cossignani,L., Simonetti,M.S., Santinelli,F. and Monotti,M. Stereospecific analysis of triacylglycerols from vegetable oils by two procedures. 2. Normal and high-oleic sunflower oils. J. Am. Oil Chem. Soc., 74, 927-933 (1997).
  • Dangi, B., Obeng,M., Nauroth,J.M., Teymourlouei,M., Needham,M., Raman,K. and Arterburn,L.M. Biogenic synthesis, purification, and chemical characterization of anti-inflammatory resolvins derived from docosapentaenoic acid (DPAn-6). J. Biol. Chem., 284, 14744-14759 (2009).
  • Deng, L., Nakano,H. and Iwasaki,Y. Direct separation of regioisomers and enantiomers of monoacylglycerols by tandem column high-performance liquid chromatography. J. Chromatogr. A, 1165, 93-99 (2007).
  • Deng, L., Nakano,H. and Iwasaki,Y. Direct separation of monoacylglycerol isomers by enantioselective high-performance liquid chromatography. J. Chromatogr. A, 1198, 67-72 (2008).
  • Dimarzo, V., Ventriglia,M., Mollo,E., Mosca,M. and Cimino,G. Occurrence and biosynthesis of 11(R)-hydroxy-eicosatetraenoic acid (11-R-HETE) in the Caribbean soft coral Plexaurella dichotoma. Experientia, 52, 834-838 (1996).
  • Engel, K-H, Albrecht,W. and Heidlas,J. Enantiodifferentiation of gamma- and delta-lactones by GC separation of diastereomeric carbamoyloxy carboxamide derivatives. J. Agric. Food Chem., 38, 244-247 (1990).
  • Ferdinandusse, S., Rusch,H., van Lint,A.E.M., Dacremont,G., Wanders,R.J.A. and Vreken,P. Stereochemistry of the peroxisomal branched-chain fatty acid alpha- and beta-oxidation systems in patients suffering from different peroxisomal disorders. J. Lipid Res., 43, 438-444 (2002).
  • Flores, G., Blanch, G.P. and del Castillo, M.L.R. Isolation of the four methyl jasmonate stereoisomers and their effects on selected chiral volatile compounds in red raspberries. Food Chem., 141, 2982-2987 (2013).
  • Foglia, T.A. and Maeda,K. HPLC separation of enantiomeric alkyl glycerol ethers. Lipids, 26, 769-773 (1991).
  • Foglia, T.A. and Maeda,K. HPLC separation of enantiomeric benzyl glycerides. Lipids, 27, 396-399 (1992).
  • Fox, S.R., Akpinar,A., Prabhune,A.A., Friend,J. and Ratledge,C. The biosynthesis of oxylipins of linoleic and arachidonic acids by the sewage fungus Leptomitus lacteus, including the identification of 8R-hydroxy-9Z,12Z-octadecadienoic acid. Lipids, 35, 23-30 (2000).
  • Garcia, P., Franco,P., Alvarez,R. and de Lera,A.R. Separation of regioisomers and enantiomers of underivatized saturated and unsaturated fatty acid monoacylglycerols using enantioselective HPLC. J. Sep. Sci., 34, 999-1003 (2011).
  • Gardner, H.W. Analysis of plant lipoxygenase metabolites. In: Advances in Lipid Methodology - Four, pp. 1-43 (edited by W.W. Christie, Oily Press, Dundee) (1997).
  • Gardner, H.W. and, Hou,C.T. All (S) stereoconfiguration of 7,10-dihydroxy-8(E)-octadecenoic acid from bioconversion of oleic acid by Pseudomonas aeruginosa. J. Am. Oil Chem. Soc., 76, 1151-1156 (1999).
  • Garscha, U. and Oliw,E.H. Steric analysis of 8-hydroxy- and 10-hydroxyoctadecadienoic acids and dihydroxyoctadecadienoic acids formed from 8R-hydroperoxyoctadecadienoic acid by hydroperoxide isomerases. Anal. Biochem., 367, 238-246 (2007).
  • Garscha, U., Nilsson,T. and Oliw,E.H. Enantiomeric separation and analysis of unsaturated hydroperoxy fatty acids by chiral column chromatography-mass spectrometry. J. Chromatogr. B, 872, 90-98 (2008).
  • German, J.B. and Berger,R. Formation of 8,15-dihydroxy eicosatetraenoic acid via 15- and 12-lipoxygenases in fish gill. Lipids, 25, 849-853 (1990).
  • Gradowska,W. and Larsson,L., Determination of absolute configuration of 2- and 3-hydroxy fatty acids in organic dust by GC-MS. J. Microb. Methods, 20, 55-67 (1994).
  • Guo,L., Zhang, X., Zhou, D.Q., Okunade, A.L. and Su, X. Stereospecificity of fatty acid 2-hydroxylase and differential functions of 2-hydroxy fatty acid enantiomers. J. Lipid Res., 53, 1327-1335 (2012).
  • Habel,A., Spiteller,D. and Boland,W. 1-Phenylethyl isocyanate is a powerful reagent for the chiral analysis of secondary alcohols and hydroxy fatty acids with remote stereogenic centres. J. Chromatogr. A, 1165, 182-190 (2007).
  • Hamberg,M. New cyclopentenone fatty acids formed from linoleic and linolenic acids in potato. Lipids, 35, 353-363 (2000).
  • Hamberg,M. Trihydroxyoctadecenoic acids in beer: qualitative and quantitative analysis. J. Agric. Food Chem., 39, 1568-1572 (1991).
  • Hamberg,M. Regio- and stereochemical analysis of trihydroxyoctadecenoic acids derived from linoleic acid 9- and 13-hydroperoxides. Lipids, 26, 407-415 (1991).
  • Hamberg,M. A method for the determination of the stereochemistry of alpha,beta-epoxy alcohols derived from fatty acid hydroperoxides. Lipids, 27, 1042-1046 (1992).
  • Hamberg,M. Stereochemistry of hydrogen removal during oxygenation of linoleic acid by singlet oxygen and synthesis of 11(S)-deuterium-labeled linoleic acid. Lipids, 46, 201-206 (2011).
  • Hamberg,M. and Hamberg,G. 15(R)-Hydroxylinoleic acid, an oxylipin from oat seeds. Phytochemistry, 42, 729-732 (1996).
  • Hamberg,M., Gerwick,W.H. and Asen,P.A. Linoleic acid metabolism in the red alga Lithothamnion coralloides: biosynthesis of 11(R)-hydroxy-9(Z),12(Z)-octadecadienoic acid. Lipids, 27, 487-493 (1992).
  • Han,B.N., McPhail,K.L., Ligresti,A., Di Marzo,V. and Gerwick,W.H. Semiplenamides A-G, fatty acid amides from a Papua New Guinea collection of the marine cyanobacterium Lyngbya semiplena. J. Nat. Prod., 66, 1364-1368 (2003).
  • Harkewicz,R., Fahy,E., Andreyev,A. and Dennis,E.A. Arachidonate-derived dihomoprostaglandin production observed in endotoxin-stimulated macrophage-like cells. J. Biol. Chem., 282, 2899-2910 (2007).
  • Harp,T.K. and Hammond,E.G. Stereospecific analysis of soybean triacylglycerols. Lipids, 33, 209-216 (1998).
  • Hartmann,S., Besra,G.S., Fraser,J.L., Konig,W.A., Minnikin,D.E. and Ridell,M. Stereochemistry of 2,4-dimethyleicos-2-enoate from the pyruvylated glycolipid of Mycobacterium smegmatis. Biochim. Biophys. Acta, 1201, 339-344 (1994).
  • Hashimoto,A. and Ichimoto,I., (S)-3-Acetyl-1,2-diacyl-sn-glycerols from the lipids of Drosicha corpulenta Kuwana (Homoptera: Margarodidae). Appl. Entomol. Zool., 25, 515-516 (1990).
  • Hauff,S. and Vetter,W. Exploring the fatty acids of vernix caseosa in form of their methyl esters by off-line coupling of non-aqueous reversed phase high performance liquid chromatography and gas chromatography coupled to mass spectrometry. J. Chromatogr. A, 1217, 8270-8278 (2010).
  • Hauff,S., Hottinger,G. and Vetter,W. Enantioselective analysis of chiral anteiso fatty acids in the polar and neutral lipids of food. Lipids, 45, 357-365 (2010).
  • Hauff,S., Rilfors,L., Hottinger,G. and Vetter,W. Structure and absolute configuration of an unsaturated anteiso fatty acid from Bacillus megaterium. J. Chromatogr. A, 1217, 1683-1687 (2010).
  • Hirota,T., Minato,K., Ishii,K., Nishimura,N. and Sato,T. HPLC determination of the enantiomers of carnitine and acetylcarnitine on a chiral stationary-phase. J. Chromatogr. A, 673, 37-43 (1994).
  • Huang,K. and Armstrong,D.W. GC-MS analysis of crocetane, phytane and some of their stereoisomers using cyclodextrin-based stationary phases. Org. Geochem., 40, 283-286 (2009).
  • Huang,L.S., Kim,M.R. and Sok,D.-E. Oxygenation of 1-docosahexaenoyl lysophosphatidylcholine by lipoxygenases; conjugated hydroperoxydiene and dihydroxytriene derivatives. Lipids, 42, 981-990 (2007).
  • Huang,L.S., Kang,J.S., Kim,M.R. and Sok,D.E. Oxygenation of arachidonoyl lysophospholipids by lipoxygenases from soybean, porcine leukocyte, or rabbit reticulocyte. J. Agric. Food Chem., 56, 1224-1232 (2008).
  • Hubke,H., Garbe,L.A. and Tressl,R. Characterization and quantification of free and esterified 9-and 13-hydroxyoctadecadienoic acids (HODE) in barley, germinating barley, and finished malt. J. Agric. Food Chem., 53, 1556-1562 (2005).
  • Hurst,J.S., Balazy,M., Bazan,H.E.P. and Bazan,N.G. The epithelium, endothelium and stroma of the rat cornea generate (12S)-hydroxyeicosatetraenoic acid as the main lipoxygenase metabolite in response to injury. J. Biol. Chem., 266, 6726-6730 (1991).
  • Ichikawa,A., Takahashi,H., Ooi,T. and Kusumi,T. Absolute configurations of some hydroxy-fatty acids produced by the insect genus Laccifer. Biosci. Biotechn. Biochem., 61, 881-883 (1997).
  • Imaizumi,K., Terasima,H., Akasaka,K. and Ohrui,H. Highly potent chiral labeling reagents for the discrimination of chiral alcohols. Anal. Sci., 19, 1243-1249 (2003).
  • Itabashi,Y. Chiral-phase HPLC resolution of enantiomeric diacylglycerol moieties of fish-oil triacylglycerols. Bunseki Kagaku, 48, 1145-1148 (1999).
  • Itabashi,Y. Chiral separation of glycerolipids by high-performance liquid chromatography. J. Lipid Nutr., 21, 27-34 (2012).
  • Itabashi,Y. and Kuksis,A. Reassessment of stereochemical configuration of natural phosphatidylglycerols by chiral-phase high-performance liquid chromatography and electrospray mass spectrometry. Anal. Biochem., 254, 49-56 (1997).
  • Itabashi,Y., Fujishima,H. and Rina Sato,R. Chiral phase high-performance liquid chromatographic separation of enantiomeric 1,2- and 2,3-O-isopropylidene-sn-glycerols as 3,5-dinitrophenylurethanes. J. Oleo Sci., 53, 405-412 (2004).
  • Itabashi,Y., Kawano,M., Aoyama,T. and Nakajima,T. Stereospecific analysis of gamma-linolenic acid-rich triacylglycerols by HPLC Bunseki Kagaku, 49, 375-380 (2000).
  • Itabashi,Y., Kuksis,A. and Myher,J.J. Determination of molecular species of enantiomeric diacylglycerols by chiral phase HPLC and polar capillary GC. J. Lipid Res., 31, 2119-2126 (1990).
  • Itabashi,Y., Kuksis,A., Marai,L. and Takagi,T. HPLC resolution of diacylglycerol moieties of natural triacylglycerols on a chiral phase consisting of bonded R-(+)-1-(1-naphthyl)-ethylamine. J. Lipid Res., 31, 1711-1717 (1990).
  • Itabashi,Y., Marai,L. and Kuksis,A. Identification of natural diacylglycerols as the 3,5-dinitrophenylurethanes by chiral phase liquid chromatography with MS. Lipids, 26, 951-956 (1991).
  • Itabashi,Y., Myher,J.J. and Kuksis,A. Determination of positional distribution of short-chain fatty acids in bovine milk fat on chiral columns. J. Am. Oil Chem. Soc., 70, 1177-1181 (1993).
  • Itabashi,Y., Myher,J.J. and Kuksis,A. High-performance liquid chromatographic resolution of reverse isomers of 1,2-diacyl-rac-glycerols as 3,5-dinitrophenylurethanes. J. Chromatogr. A, 893, 261-279 (2000).
  • Iwasaki,Y., Yasui,M., Ishikawa,T., Irimescu,R., Hata,K. and Yamane,T. Optical resolution of asymmetric triacylglycerols by chiral-phase high-performance liquid chromatography. J. Chromatogr. A, 905, 111-118 (2001).
  • Jenske,R. and Vetter,W. Enantioselective analysis of 2-and 3-hydroxy fatty acids in food samples. J. Agric. Food Chem., 56, 11578-11583 (2008).
  • Jenske,R. and Vetter,W. Highly selective and sensitive gas chromatography-electron-capture negative-ion mass spectrometry method for the indirect enantioselective identification of 2-and 3-hydroxy fatty acids in food and biological samples. J. Chromatogr. A, 1146, 225-231 (2007).
  • Jerneren,F., Sesma,A., Francheschetti,M., Hamberg,M. and Oliw,E.H. Gene deletion of 7,8-linoleate diol synthase of the rice blast fungus. Studies on pathogenicity, stereochemistry, and oxygenation mechanisms. J. Biol. Chem., 285, 5308-5316 (2010).
  • Jiang,W., Liu,D., Deng,Z.W., de Voogd,N.J., Proksch,P. and Lin,W.H. Brominated polyunsaturated lipids and their stereochemistry from the Chinese marine sponge Xestospongia testudinaria. Tetrahedron, 67, 58-68 (2011).
  • Jiao,Y., Yoshihara,T., Akimoto,M. and Ichihara,A. A new hydroxytetradecatrienoic acid and its glyceryl esters from Valsa ambiens. Phytochemistry, 38, 419-422 (1995).
  • Jin,S.-J., Hoppel,C.L. and Tserng,K.-Y. Incomplete fatty acid oxidation. The production and epimerization of fatty acids. J. Biol. Chem., 267, 119-125 (1992).
  • Johnson,J.A., Blackburn,M.L., Bull,A.W., Welsch,C.W. and Watson,J.T. Separation and quantitation of linoleic acid oxidation products in mammary gland tissue from mice fed low-and high-fat diets. Lipids, 32, 369-375 (1997).
  • Jung,S. and Hollingsworth,R.I. Structures and stereochemistry of the very-long alpha,omega-bifunctional alkyl species in the membranes of Sarcina ventriculi indicate that they are formed by tail-to-tail coupling of normal fatty acids. J. Lipid Res., 35, 1932-1945 (1994).
  • Kai,K., Akaike,R., Iida,K., Yokoyama,M. and Watanabe,N. C-14-Oxylipin glucosides isolated from Lemna paucicostata. Phytochemistry, 71, 1168-1173 (2010).
  • Karara,A., Dishman,E., Falck,J.R. and Capdevila,J.H. Endogenous epoxyeicosatrienoyl-phospholipids. A novel class of cellular glycerolipids containing epoxidized arachidonate moieties. J. Biol. Chem., 266, 7561-7569 (1991).
  • Karara,A., Wei,S., Spady,D., Swift,L., Capdevila,J.H. and Falck,J.R. Arachidonic acid epoxygenase: structural characterization and quantification of epoxyeicosatrienostes in plasma. Biochem. Biophys. Res. Commun., 182, 1320-1325 (1992).
  • Kaunzinger,A., Podebrad,F., Liske,R., Maas,B., Dietrich,A. and Mosandl,A. Stereochemical differentiation and simultaneous analysis of 3-hydroxyalkanoic, 4-hydroxyalkanoic, and 5-hydroxyalkanoic acids from biopolyesters by multidimensional gas chromatography. J. High Resolut. Chromatogr., 18, 49-53 (1995).
  • Kaunzinger,A., Thomsen,M., Dietrich,A. and Mosandl,A. Stereodifferentiation and simultaneous analysis of 2-hydroxyalkanoic and 3-hydroxyalkanoic acids from biomembranes by multidimensional gas chromatography. J. High Resolut. Chromatogr., 18, 191-193 (1995).
  • Kawahara,K., Sato,N., Tsuge,K. and Seto,Y. Confirmation of the anomeric structure of galacturonic acid in the galacturonosyl-ceramide of Sphingomonas yanoikuyae. Microbiol. Immunol., 50, 67-71 (2006).
  • Kawahara,T., Kumaki,Y., Kamada,T., Ishii,T. and Okino,T. Absolute configuration of chlorosulfolipids from the chrysophyta Ochromonas danica. J. Org. Chem., 74, 6016-6024 (2009).
  • Kawamura,A., Berova,N., Dirsch,V., Mangoni,A., Nakanishi,K., Schwartz,G., Bielawska,A., Hannun,Y. and Kitagawa,I. Picomole scale stereochemical analysis of sphingosines and dihydrosphingosines. Bioorg. Med. Chem., 4, 1035-1043 (1996).
  • Kawamura,A., Nakanishi,K. and Berova,N. Use of circular dichroism for assigning stereochemistry of sphingosine and other long-chain bases. Methods Enzymol. Sphingolipid Metabolism and Cell Signaling, Part B, 312, 217-227 (2000).
  • Keegan,D.S., Hagen,S.R. and Johnson,D.A. Efficient asymmetric synthesis of (R)-3-hydroxytetradecanoic and alkanoyloxytetradecanoic acids and method for the determination of enantiomeric purity. Tetrahedron: Asymmetry, 7, 3559-3564 (1996).
  • Kim,H., Gardner,H.W. and Hou,C.T. 10(S)-hydroxy-8(E)-octadecenoic acid, an intermediate in the conversion of oleic acid to 7,10-dihydroxy-8(E)-octadecenoic acid. J. Am. Oil Chem. Soc., 77, 95-99 (2000).
  • Kim,J.H., Nishida,Y., Ohrui,H. and Meguro,H. A highly sensitive HPLC method to determine the absolute configuration of glycosyl diacylglycerols using a fluorescent chiral derivatizing reagent. J. Carbohyd. Chem., 14, 889-893 (1995).
  • Kim,J.H., Nishida,Y., Ohrui,H. and Meguro,H. Highly sensitive high-performance liquid chromatographic method to discriminate enantiomeric monoacylglycerols based on fluorescent chiral derivatization with (S)-(+)-2-tert-buty1-2-methyl-1,3-benzodioxole-4-carboxylic acid. J. Chromatogr. A, 709, 375-380 (1995).
  • Kim,J.H., Nishida,Y., Ohrui,H. and Meguro,H. Simple and highly sensitive high-performance liquid-chromatographic method for separating enantiomeric diacylglycerols by direct derivatization with a fluorescent chiral agent, (S)-(+)-2-tert-butyl-2-methyl-1,3-benzodioxole-4-carboxylic acid. J. Chromatogr. A, 693, 241-249 (1995).
  • Kim,J.H., Uzawa,H., Nishida,Y., Ohrui,H. and Meguro,H. Highly sensitive high-performance liquid-chromatographic method for the determination of the absolute-configuration and the optical purity of di-O-acylglycerols using a chiral derivatizing agent, (S)-(+)-2-tert.-butyl-2-methyl-1,3-benzodioxole-4-carboxylic acid. J. Chromatogr. A, 677, 35-43 (1994).
  • Kikuchi,M., Yaoita,Y. and Kiknchi,M. Monohydroxy-substituted polyunsaturated fatty acids from Swertia japonica. Helv. Chim. Acta, 91, 1857-1862 (2008).
  • Kiss,L., Bier,J., Roder,Y., Weissmann,N., Grimminger,F. and Seeger,W. Direct and simultaneous profiling of epoxyeicosatrienoic acid enantiomers by capillary tandem column chiral-phase liquid chromatography with dual online photodiode array and tandem mass spectrometric detection. Anal. Bioanal. Chem., 392, 717-726 (2008).
  • Kiyose,C., Kaneko,K., Muramatsu,R., Ueda,T. and Igarashi,O. Simultaneous determination of RRR-and SRR-alpha-tocopherols and their quinones in rat plasma and tissues by using chiral high-performance liquid chromatography. Lipids, 34, 415-422 (1999).
  • Kodai,T., Nakatani,T. and Noda,N. The absolute configurations of hydroxy fatty acids from the royal jelly of honeybees (Apis mellifera). Lipids, 46, 263-270 (2011).
  • Kuhn,H. and Wiesner,R. Separation of hydroxylated polyenoic fatty acid enantiomers on Pirkle-type chiral phase HPLC columns. J. Chromatogr. A, 520, 391-402 (1990).
  • Kuhn,H., Belker,J., Wiesner,R., Schewe,T., Lankin,V.Z. and Tikhaze,A.K. Structure elucidation of oxygenated lipids in human atherosclerotic lesions. Eicosanoids, 5, 17-22 (1992).
  • Kuhn,H., Belkner,J. and Wiesner,R. Subcellular distribution of lipoxygenase products in rabbit reticulocyte membranes. Eur. J. Biochem., 191, 221-227 (1990).
  • Kuhn,H., Heydeck,D. and Sprecher,H. On the mechanistic reason for the dual positional specificity of the reticulocyte lipoxygenase. Biochim. Biophys. Acta, 1081, 129-134 (1991).
  • Kuhn,H., Sprecher,H. and Brash,A.R. On singular or dual position specificity of lipoxygenases. The number of chiral products varies with alignment of methylene groups at the active site of the enzyme. J. Biol. Chem., 265, 16300-16305 (1990).
  • Kuksis,A. Analysis of positional isomers of glycerolipids by non-enzymatic methods. In: 'Advances in Lipid Methodology - Three', pp. 1-36 (ed. W. Christie, Oily Press, Dundee) (1996).
  • Kuksis,A. Lipidomics in triacylglycerol and cholesteryl ester oxidation. Frontiers Bioscience, 12, 3203-3246 (2007).
  • Kuksis,A. and Itabashi,Y. Regio- and stereospecific analysis of glycerolipids. Methods, 36, 172-185 (2005).
  • Kuksis,A. and Itabashi,Y. LC/MS and chiral separation. In: Lipid Analysis and Lipidomics: New Techniques and Applications. pp. 73-108 (ed: M.M. Mossoba, J.K.G. Kramer, J.T. Brenna and R.E. McDonald, AOCS Press, Champaign, USA) (2006).
  • Kuksis,A. and Myher,J.J. Mass analysis of molecular species of diradylglycerols. In: 'Methods in Inositide Research', pp. 187-216 (edited by R.F. Irvine, Raven Press, New York) (1990).
  • Kuksis,A., Marai,L., Myher,J.J., Itabashi,Y. and Pind,S. Applications of GC/MS, LC/MS and FAB/MS to determination of molecular species of glycerolipids. In: Analyses of Fats, Oils and Lipoproteins, pp. 464-495 (ed. E.G. Perkins, American Oil Chemists' Society, Champaign, U.S.A.) (1991).
  • Kusters,E., Spondlin,C., Volken,C. and Eder,C. Direct resolution of beta-hydroxy myristic acid enantiomers by chiral phase GC and HPLC. Chromatographia, 33, 159-162 (1992).
  • Laakso,P. and Christie,W.W. Chromatographic resolution of chiral diacylglycerol derivatives: potential in the stereospecific analysis of triacyl-sn-glycerols. Lipids, 25, 349-353 (1990).
  • Lee,S.H. and Blair,I.A. Targeted chiral lipidomics analysis by liquid chromatography electron capture atmospheric pressure chemical ionization mass spectrometry (LC-ECAPCI/MS). Methods Enzymol., 433, 159-174 (2007).
  • Lee,S.H. and Blair,I.A. Targeted chiral lipidomics analysis of bioactive eicosanoid lipids in cellular systems. BMB Reports, 42, 401-410 (2009).
  • Lee,S.H., Williams,M.V. and Blair,I.A. Targeted chiral lipidomics analysis. Prostaglandins Other Lipid Mediators, 77, 141-157 (2005).
  • Lee,S.H., Williams,M.V., DuBois,R.N. and Blair,I.A. Targeted lipidomics using electron capture atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom., 17, 2168-2176 (2003).
  • Lehner,R. and Kuksis,A. Triacylglycerol synthesis by an sn-1,2(2,3)-diacylglycerol transacylase from rat intestinal microsomes. J. Biol. Chem., 268, 8781-8786 (1993).
  • Lehner,R., Kuksis,A. and Itabashi,Y. Stereospecificity of monoacylglycerol and diacylglycerol acyltransferases from rat intestine as determined by chiral phase HPLC. Lipids, 28, 29-34 (1993).
  • Lesot, P., Baillif,V. and Billault,I. Combined analysis of C-18 unsaturated fatty acids using natural abundance deuterium 2D NMR spectroscopy in chiral oriented solvents. Anal. Chem., 80, 2963-2972 (2008).
  • Li, S.R., Wilson,W.K. and Schroepfer,G.J . New methods for determining the enantiomeric purity of erythro-sphingosine. J. Lipid Res., 40, 764-772 (1999).
  • Lisa, M. and Holcapek, M. Characterization of triacylglycerol enantiomers using chiral HPLC/APCI-MS and synthesis of enantiomeric triacylglycerols. Anal. Chem., 85, 1852-1859 (2013).
  • Lu, Y., Tian,H.B. and Hong,S. Novel 14,21-dihydroxy-docosahexaenoic acids: structures, formation pathways, and enhancement of wound healing. J. Lipid Res., 51, 923-932 (2010).
  • Luquain, C., Dolmazon,R., Enderlin,J.M., Laugier,G., Lagarde,M. and Pageaux,J.F. Bis(monoacylglycerol) phosphate in rat uterine stromal cells: structural characterization and specific esterification of docosahexaenoic acid. Biochem. J., 351, 795-804 (2000).
  • Lysz, T.W., Wu,Y., Brash,A.R., Keeting,P.A., Lin,C. and Fu,S.C.J. Identification of 12(S)-hydroxyeicosatetraenoic acid in the young rat lens. Current Eye Res., 10, 331-337 (1991).
  • Ma, W., Fu, S., Hashi, Y. and Chen, Z.L. Determination of chiral jasmonates in flowers by GC/MS after monolithic material sorptive extraction. J. Agric. Food Chem.,61, 6288-6292 (2013).
  • MacKenzie, S.L., Giblin,E.M. and Mazza,G. Stereospecific analysis of Onosmodium hispidissimum Mack. seed oil triglycerides. J. Am. Oil Chem. Soc., 70, 629-631 (1993).
  • Makarieva, T.N., Zakharenko,A.M., Dmitrenok,P.S., Guzii,A.G., Denisenko,V.A., Savina,A.S., Dalisay,D.S., Molinski,T.F. and Stonik,V.A. Isorhizochalin: a minor unprecedented bipolar sphingolipid of stereodivergent biogenesis from the Rhizochalina incrustata. Lipids, 44, 1155-1162 (2009).
  • Malkar, N.B. and Kumar,V.G. Optical resolution of (+/-)-threo-9,10,16-trihydroxy hexadecanoic acid using (-)brucine. J. Am. Oil Chem. Soc., 75, 1461-1463 (1998).
  • Manzo, E., Carbone,M., Mollo,E., Irace,C., Di Pascale,A., Li,Y., Ciavatta,M.L., Cimino,G., Guo,Y.W. and Gavagnin,M. Structure and synthesis of a unique isonitrile lipid isolated from the marine mollusk Actinocyclus papillatus. Org. Letts, 13, 1897-1899 (2011).
  • Marai, L., Kuksis,A., Myher,J.J. and Itabashi,Y. Liquid chromatography chloride attachment negative chemical ionization mass spectrometry of diacylglycerol dinitrophenyurethanes. Biol. Mass Spectrom., 21, 541-547 (1992).
  • Martini, D. and Iacazio,G. Enantiomeric separation of various lipoxygenase derived monohydroxy polyunsaturated fatty acid methyl esters by high-performance liquid chromatography. J. Chromatogr. A, 790, 235-241 (1997).
  • Matsuyama,T. and Nakagawa,Y. Surface-active exolipids: analysis of absolute chemical structures and biological functions. J. Microb. Methods, 25, 165-175 (1996).
  • Mazur,A.W., Hiler,G.D., Lee,S.S.C., Armstrong,M.P. and Wendel,J.D. Regio- and stereoselective enzymatic esterification of glycerol and its derivatives. Chem. Phys. Lipids, 60, 189-199 (1991).
  • Mesaros,C., Lee,S.H. and Blair,I.A. Analysis of epoxyeicosatrienoic acids by chiral liquid chromatography/electron capture atmospheric pressure chemical ionization mass spectrometry using [C-13]-analog internal standards. Rapid Commun. Mass Spectrom., 24, 3237-3247 (2010).
  • Mika,A., Golebiowski,M., Szafranek,J., Rokicki,J., Stepnowski,P., Nilsson,T., Ivanov,I.V. and Oliw,E.H. LC-MS/MS analysis of epoxyalcohols and epoxides of arachidonic acid and their oxygenation by recombinant CYP4F8 and CYP4F22. Arch. Biochem. Biophys., 494, 64-71 (2010).
  • Miller,L. and Weyker,C. Analytical and preparative resolution of enantiomers of prostaglandin precursors and prostaglandins by liquid chromatography on derivatized cellulose stationary phase. J. Chromatogr. A, 511, 97-107 (1990).
  • Molinari,F., Valenti,M., Potenza,D., Dionis,F. and Aragozzini,F. Determination of the enantiomeric composition of 1,2-diacylglycerols from oive oil by GC and 13C NMR spectroscopy. Ital. J. Food Sci., 7, 37-45 (1995).
  • Mori,K., Tashiro,T., Akasaka,K., Ohrui,H. and Fattorusso,E. Determination of the absolute configuration at the two cyclopropane moieties of plakoside A, an immunosuppressive marine galactosphingolipid. Tetrahedron Letts., 43, 3719-3722 (2002).
  • Mulugeta,S., Suzuki,T., Hernandez,N.T., Griesser,M., Boeglin,W.E. and Schneider,C. Identification and absolute configuration of dihydroxy-arachidonic acids formed by oxygenation of 5S-HETE by native and aspirin-acetylated COX-2. J. Lipid Res., 51, 575-585 (2010).
  • Myher,J.J. and Kuksis,A. General strategies in chromatographic analysis of lipids. J. Chromatogr. B, 671, 3-33 (1995).
  • Myher,J.J., Kuksis,A. and Park,P.W. Stereospecific analysis of docosahexaenoic acid-rich triacylglycerols by chiral-phase HPLC with online electrospray mass spectrometry. In: 'New Techniques and Applications in Lipid Analysis', pp. 100-120 (edited by R.E. McDonald and M.M. Mossoba, AOCS Press, Champaign) (1998).
  • Myher,J.J., Kuksis,A., Geher,K., Park,P.W. and Diersen-Schade,D.A. Stereospecific analysis of triacylglycerols rich in long-chain polyunsaturated fatty acids. Lipids, 31, 207-215 (1996).
  • Myrdal,P.B., Angersbach,B.S., Karlage,K. and Kuehl,P.J. Chiral separation of lipoxygenase metabolites utilizing high-performance liquid chromatography. J. Chromatogr. A, 1132, 315-319 (2006).
  • Nagai,T., Mizobe,H., Otake,I., Ichioka,K., Kojima,K., Matsumoto,Y., Gotoh,N., Kuroda,I. and Wada,S. Enantiomeric separation of asymmetric triacylglycerol by recycle high-performance liquid chromatography with chiral column. J. Chromatogr. A, 1218, 2880-2886 (2011).
  • Nakagawa,Y. and Matsuyama,T. Chromatographic determination of optical configuration of 3-hydroxy fatty acids composing microbial surfactants. FEMS Microbiol. Letts, 108, 99-102 (1993).
  • Nakagawa,Y., Kishida,K., Kodani,Y. and Matsuyama,T. Optical configuration analysis of hydroxy fatty acids in bacterial lipids by chiral column high-performance liquid chromatography. Microbiol. Immunol., 41, 27-32 (1997).
  • Nishida,Y., Kim,J.H., Ohrui,H. and Meguro,H. On-line HPLC-exciton CD analysis using a chiral benzoyl agent, (S)-TBMB carboxylic acid: A promising approach toward selective identification of enantiomeric diols and diamines. J. Am. Chem. Soc., 119, 1484-1485 (1997).
  • Nishimura,H., Murayama,K., Watanabe,T., Honda,Y. and Watanabe,T. Absolute configuration of ceriporic acids, the iron redox-silencing metabolites produced by a selective lignin-degrading fungus, Ceriporiopsis subvermispora. Chem. Phys. Lipids, 159, 77-80 (2009).
  • Noda,N., Umebayashi,K., Nakatani,T., Miyahara,K. and Ishiyama,K. Isolation and characterization of some hydroxy fatty and phosphoric acid esters of 10-hydroxy-2-decenoic acid from the royal jelly of honeybees (Apis mellifera). Lipids, 40, 833-838 (2005).
  • Nuhn,P. Analytics and biophysics of branched fatty acids in lipids. Fett-Lipid, 98, 335-338 (1996).
  • Oh,S.F., Pillai,P.S., Recchiuti,A., Yang,R. and Serhan,C.N. Pro-resolving actions and stereoselective biosynthesis of 18S E-series resolvins in human leukocytes and murine inflammation. J Clin Invest., 121, 569–581 (2011).
  • Oh,S.F., Vickery,T.W. and Serhan,C.N. Chiral lipidomics of E-series resolvins: Aspirin and the biosynthesis of novel mediators. Biochim. Biophys. Acta, 1811, 737-747 (2011)
  • Ohtaki,T., Akasaka,K., Kabuto,C. and Ohrui,H. Chiral discrimination of secondary alcohols by both H-1-NMR and HPLC after labeling with a chiral derivatization reagent, 2-(2,3-anthracenedicarboximide)cyclohexane carboxylic acid. Chirality, 17, S171-S176 Suppl. S (2005).
  • Okabe,H., Itabashi,Y., Ota,T. and Kuksis,A. Highly sensitive method for the separation of enantiomeric and regioisomeric diacylglycerols as 2-anthrylurethanes by chiral-phase high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A, 829, 81-89 (1998).
  • Oliw, E.H. Resolution of enantiomers of 19- and 18-hydroxyeicosatetraenoate by chiral-phase HPLC of naphthoyl ester derivatives. J. Chromatogr. B, 526, 525-529 (1990).
  • Oliw, E.H. Enantioselective separation of some polyunsaturated epoxy fatty acids by HPLC on a cellulose phenylcarbamate (Chiralcel OC) stationary phase. J. Chromatogr. B, 583, 231-235 (1992).
  • Oliw, E.H., Bylund,J. and Herman,C. Bisallylic hydroxylation and epoxidation of polyunsaturated fatty acids by cytochrome P450. Lipids, 31, 1003-1021 (1996).
  • Oliw, E.H., Wennman,A., Hoffmann,I., Garscha,U., Hamberg,M. and Jerneren,F. Stereoselective oxidation of regioisomeric octadecenoic acids by fatty acid dioxygenases. J. Lipid Res., 52, 1995-2004 (2011).
  • Osipova, E.V., Lantsova,N.V., Chechetkin,I.R., Mukhitova,F.K., Hamberg,M. and Grechkin,A.N. Hexadecanoid pathway in plants: Lipoxygenase dioxygenation of (7Z,10Z,13Z)-hexadecatrienoic acid. Biochemistry-Moscow, 75, 708-716 (2010).
  • Ota, T., Kawabata,Y. and Ando,Y. Positional distribution of 24:6(n-3) in triacyl-sn-glycerols from flathead flounder liver and flesh. J. Am. Oil Chem. Soc., 71, 475-478 (1994).
  • Pallavicini, M., Villa,L. and Cesarotti,E. HPLC determination of the enantiomeric excess of 1,3-glyceryl diethers obtained by stereoselective catalytic reduction. J. Chromatogr. A, 604, 197-202 (1992).
  • Petrosino, T., Riccieri,R., Blasi,F., Brutti,M., D'arco,G., Bosi,A., Maurelli,S., Cossignani,L., Simonetti,M.S. and Damiani,P. Original normal-phase high-performance liquid chromatographic separation of monoacylglycerol classes from extra virgin olive oil Triacylglycerols for their stereospecific analysis. J. AOAC Int., 90, 1647-1654 (2007).
  • Piyatheerawong, W., Iwasaki,Y. and Yamane,T. Direct separation of regio- and enantiomeric isomers of diacylglycerols by a tandem column high-performance liquid chromatography. J. Chromatogr. A, 1068, 243-248 (2005).
  • Piyatheerawong, W., Yamane,T., Nakano,H. and Iwasaki,Y. Enzymatic preparation of enantiomerically pure sn-2,3-diacylglycerols: A stereoselective ethanolysis approach. J. Am. Oil Chem. Soc., 83, 603-607 (2006).
  • Porter, N.A., Dussault,P., Breyer,R.A., Kaplan,J. and Morelli,J. The resolution of racemic hydroperoxides: a chromatography-based separation of perketals derived from arachidonic, linoleic and oleic acid hydroperoxides. Chem. Res. Toxicol., 3, 236-243 (1990).
  • Rackham, D.M. and Harvey,G.A. Stereochemical analysis of a leukotriene related hydroxypentadecadiene using a chiral HPLC column and diode array detection. J. Chromatogr. A, 542, 189-192 (1991).
  • Ramstedt, B. and Slotte,J.P. Separation and purification of sphingomyelin diastereomers by high-performance liquid chromatography. Anal. Biochem., 282, 245-249 (2000).
  • Redden, P.R., Lin,X.R., Fahey,J. and Horrobin,D.F. Stereospecific analysis of the major triacylglycerol species containing gamma-linolenic acid in evening primrose oil and borage oil. J. Chromatogr. A, 704, 99-111 (1995).
  • Reske, J., Siebrecht,J. and Hazebroek,J. Triacylglycerol composition and structure in genetically modified sunflower and soybean oils. J. Am. Oil Chem. Soc., 74, 989-998 (1997).
  • Rezanka, T., Lukavsky, J., Nedbalova, L., Kolouchova, I. and Sigler, K. Effect of starvation on the distribution of positional isomers and enantiomers of triacylglycerol in the diatom Phaeodactylum tricornutum. Phytochemistry, 80, 17-27 (2012).
  • Rezanka, T., Kolouchova, I., Cejkova, A., Cajthaml, T. and Sigler, K. Identification of regioisomers and enantiomers of triacylglycerols in different yeasts using reversed- and chiral-phase LC-MS. J. Sep. Sci., 36, 3310-3320 (2013).
  • Rodriguez, J.A., Ben Ali,Y., Abdelkafi,S., Mendoza,L.D., Leclaire,J., Fotiadu,F., Buono,G., Carriere,F. and Abousalham,A. In vitro stereoselective hydrolysis of diacylglycerols by hormone-sensitive lipase. Biochim. Biophys. Acta, 1801, 77-83 (2010).
  • Rodriguez, J.A., Mendoza,L.D., Pezzotti,F., Vanthuyne,N., Leclaire,J., Verger,R., Buono,G., Carriere,F. and Fotiadu,F. Novel chromatographic resolution of chiral diacylglycerols and analysis of the stereoselective hydrolysis of triacylglycerols by lipases. Anal. Biochem., 375, 196-208 (2008).
  • Rogalska, E., Cudrey,C., Ferrato,F. and Verger,R. Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality, 5, 24-30 (1993).
  • Rogalska, E., Ransac,S. and Verger,R. Stereoselectivity of lipases. II. Stereoselective hydrolysis of triglycerides by gastric and pancreatic lipases. J. Biol. Chem., 265, 20271-20276 (1990).
  • Rosati, O., Albrizio,S., Montesano,D., Riccieri,R., Cossignani,L., Curini,M., Simonetti,M.S., Rastrelli,L. and Damiani,P. HPLC separation and NMR structural elucidation of sn-1,2-, 2,3-, and 1,3-diacylglycerols from olive oil as naphthylethylurethane derivatives. J. Agric. Food Chem., 55, 191-196 (2007).
  • Rundlof, T. and Widmalm,G. A method for determination of the absolute configuration of chiral glycerol residues in natural products using TEMPO oxidation and characterization of the glyceric acids formed. Anal. Biochem., 243, 228-233 (1996).
  • Santinelli, F., Damiani,P. and Christie,W.W. The triacylglycerol structure of olive oil determined by silver ion HPLC in combination with stereospecific analysis. J. Am. Oil Chem. Soc., 69, 552-556 (1992).
  • Sato,R., Itabashi,Y., Fujishima,H., Okuyama,H. and Kuksis,A. Simple synthesis of diastereomerically pure phosphatidylglycerols by phospholipase D-catalyzed transphosphatidylation. Lipids, 39, 1025-1030 (2004).
  • Sato,R., Itabashi,Y., Hatanaka,T. and Kuksis,A. Asymmetric in vitro synthesis of diastereomeric phosphatidylglycerols from phosphatidylcholine and glycerol by bacterial phospholipase D. Lipids, 39, 1013-1018 (2004).
  • Sato,R., Itabashi,Y., Suzuki,A., Hatanaka,T. and Kuksis,A. Effect of temperature on the stereoselectivity of phospholipase D toward glycerol in the transphosphatidylation of phosphatidylcholine to phosphatidylglycerol. Lipids, 39, 1019-1023 (2004).
  • Schneider,C., Boeglin,W.E. and Brash,A.R. Enantiomeric separation of hydroxy eicosanoids by chiral column chromatography: effect of the alcohol modifier. Anal. Biochem., 287, 186-189 (2000).
  • Schneider,C., Yu,Z., Boeglin,W.E., Zheng,Y. and Brash,A.R. Enantiomeric separation of hydroxy and hydroperoxy eicosanoids by chiral column chromatography. Methods Enzymol., 433, 145-157 (2007).
  • Schroder,M. and Vetter,W. GC/EI-MS determination of the diastereomer distribution of phytanic acid in food samples. J. Am. Oil Chem. Soc., 88, 341-349 (2011).
  • Schroder,M., Lutz, N.L., Tangwan, E.C., Hajazimi, E. and Vetter, W. Phytanic acid concentrations and diastereomer ratios in milk fat during changes in the cow's feed from concentrate to hay and back. Eur. Food Res. Technol., 234, 955-962 (2012).
  • Sempore,B.G. and Bezard,J.A. Enantiomer separation by chiral-phase liquid chromatography of urethane derivatives of natural diacylglycerols previously fractionated by reversed-phase LC. J. Chromatogr. A, 557, 227-240 (1991).
  • Sempore,B.G. and Bezard,J.A. Separation of monoacylglycerol enantiomers as urethane derivatives by chiral-phase HPLC. J. Liqu. Chromatogr., 17, 1679-1694 (1994).
  • Sempore,B.G. and Bezard,J.A. Determination of molecular species of oil triacylglycerols by reversed-phase and chiral-phase HPLC. J. Am. Oil Chem. Soc., 68, 702-709 (1991).
  • Shirahata,T., Sunazuka,T., Yoshida,K., Yamamoto,D., Harigaya,Y., Kuwajima,I., Nagai,T., Kiyohara,H., Yamada,H. and Omura,S. Total synthesis, elucidation of absolute stereochemistry, and adjuvant activity of trihydroxy fatty acids. Tetrahedron, 62, 9483-9496 (2006).
  • Simpson,T.D. and Gardner,H.W. Conversion of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid to the corresponding hydroxy fatty acid by KOH: a kinetic study. Lipids, 28, 325-330 (1993).
  • Sonnet,P.E. and Hayes,D. Configurational purity of lesquerolic acid. J. Am. Oil Chem. Soc., 72, 1069-1071 (1995).
  • Sonnet,P.E., Dudley,R.L., Osman,S., Pfeffer,P.E. and Schwartz,D. Configuration analysis of unsaturated hydroxy fatty acids. J. Chromatogr. A, 586, 255-258 (1991).
  • Stritzel,R., Dobner,B., Bringezu,F. and Nuhn,P. Separation of racemic 2-alkyl-branched fatty acid methyl esters by gas-chromatography on a commercially available chiral phase. J. High Resolut. Chromatogr., 19, 121-123 (1996).
  • Sugai,T. and Ohta,H. Lipase-catalysed kinetic resolution of 2-hydroxyhexadecanoic acid and its esters. Agric. Biol. Chem., 54, 3337-3338 (1990).
  • Suzuki,T., Ota,T. and Takagi,T. Temperature effect on enantiomeric separation of diacylglycerol derivatives by HPLC on various chiral columns. J. Chromatogr. Sci., 30, 315-318 (1992).
  • Suzuki,T., Ota,T. and Takagi,T. Enantiomer separation of diacylglycerol derivatives of marine fish triacylglycerols using a chiral stationary phase. J. Chromatogr. Sci., 31, 461-464 (1993).
  • Takagi,T. Chromatographic resolution of chiral lipid derivatives. Prog. Lipid Res., 29, 277-298 (1991).
  • Takagi,T. HPLC of enantiomeric acylglycerols and alkylglycerols. In: 'CRC Handbook of Chromatography. Analysis of Lipids'. (ed. K.D. Mukherjee & N. Weber, CRC Press, Boca Raton), pp. 115-121 (1993).
  • Takagi,T. Resolution of vic-dihydroxy acid diastereomers to four enantiomers by HPLC. J. Am. Oil Chem. Soc., 71, 547-548 (1994).
  • Takagi,T. and Ando,Y. Stereospecific analysis of acyl group distribution in triacylglycerols by HPLC with chiral column. J. Japan Oil Chem. Soc. (Yukagaku), 39, 622-628 (1990).
  • Takagi,T. and Ando,Y. Stereospecific analysis of monounsaturated triacylglycerols in cocoa butter. J. Am. Oil Chem. Soc., 72, 1203-1206 (1995).
  • Takagi,T. and Ando,Y. Enantiomer separations of mixtures of monoacylglycerol derivatives by HPLC on a chiral column. Lipids, 25, 398-400 (1990).
  • Takagi,T. and Ando,Y. Stereospecific analysis of triacylglycerols by chiral-phase HPLC. Direct derivatization of partially hydrolyzed products. J. Japan Oil Chem. Soc. (Yukagaku), 40, 288-292 (1991).
  • Takagi,T. and Ando,Y. Stereospecific analysis of triacyl-sn-glycerols by chiral HPLC. Lipids, 26, 542-547 (1991).
  • Takagi,T. and Suzuki,T. Effect of temperature on chiral and achiral separation of diacylglycerol derivatives by HPLC on a chiral stationary phase. J. Chromatogr. A, 625, 163-168 (1992).
  • Takagi,T. and Suzuki,T. Enantiomer separation of diacid-diacylglycerol mixtures by HPLC on a chiral column. J. Chromatogr. A, 519, 237-243 (1990).
  • Takagi,T. and Suzuki,T. Enantiomeric resolution of diacylglycerol derivatives by HPLC on a chiral stationary phase at low temperatures. Lipids, 28, 251-253 (1993).
  • Takagi,T., Ando,Y. and Ichikawa,K. Steric structures of triacylglycerols in the seed oil of carrot Daucus carota L. var. sativa DC. J. Japan Oil Chem. Soc. (Yukagaku), 44, 971-976 (1995).
  • Takagi,T., Aoyanagi,N., Nishimura,K., Ando,Y. and Ota,T. Enantiomer separations of secondary alkanols with little asymmetry by HPLC on chiral columns. J. Chromatogr. A, 629, 385-388 (1993).
  • Takagi,T., Okamoto,J., Ando,Y. and Itabashi,Y. Separation of the enantiomers of 1-alkyl-2-acyl-rac-glycerol and of 1-alkyl-3-acyl-rac-glycerol by HPLC on a chiral columns. Lipids, 25, 108-110 (1990).
  • Takahashi,Y., Itabashi,Y., Suzuki,M. and Kuksis,A. Determination of stereochemical configuration of the glycerol moieties in glycoglycerolipids by chiral phase high-performance liquid chromatography. Lipids, 36, 741-748 (2001).
  • Tanaka,I., Matsuoka,S., Murata,M. and Tachibana,K. A new ceramide with a novel branched-chain fatty acid isolated from the epiphytic dinoflagellate Coolia monotis. J. Nat. Prod., 61, 685-688 (1998).
  • Tani,H., Takahashi,S., Hasumi,K., Tatefuji,T., Hongo,Y. and Koshino,H. Isolation of (E)-9,10-dihydroxy-2-decenoic acid from royal jelly and determination of the absolute configuration by chemical synthesis. Tetrahedron-Asymmetry, 20, 457-460 (2009).
  • Tashiro,T., Akasaka,K., Ohrui,H., Fattorusso,E. and Mori,K. Synthesis of sphingosine relatives, XXIV. Determination of the absolute configuration at the two cyclopropane moieties of plakoside A, an immunosuppressive marine galactosphingolipid. Eur. J. Org. Chem., 3659-3665 (2002).
  • Taylor,D.C., Giblin,E.M., Reed,D.W., Hogge,L.R., Olson,D.J. and MacKenzie,S.L. Stereospecific analysis and mass spectrometry of triacylglycerols from Arabidopsis thaliana (L.) Heynh. Columbia seed. J. Am. Oil Chem. Soc., 72, 305-308 (1995).
  • Taylor,D.C., MacKenzie,S.L., McCurdy,A.R., McVetty,P.B.E., Giblin,E.M., Pass,E.W., Stone,S.C., Scarth,R., Rimmer,S.T. and Pickard,M.D. Stereospecific analyses of seed triacylglycerols from high-erucic acid Brassicaceae: detection of erucic acid at the sn-2 position in Brassica oleracea L. genotypes. J. Am. Oil Chem. Soc., 71, 163-167 (1994).
  • Thiel,V., Kunze,B., Verma,P., Wagner-Dobler,I. and Schulz,S. New structural variants of homoserine lactones in bacteria. Chembiochem, 10, 1861-1868 (2009).
  • Thurnhofer,S., Hottinger,G. and Vetter,W. Enantioselective determination of anteiso fatty acids in food samples. Anal. Chem., 79, 4696-4701 (2007).
  • Tokamolthom,J., Chen,S.-T., Jeyashoke,N. and Krisnangkura,K. Gas chromatographic separation of R/S-alpha-hydroxy fatty acid esters. Anal. Chim. Acta, 465, 299-307 (2002).
  • Toschi,T.G., Christie,W.W. and Conte,L.S. Capillary GC combined with HPLC for the analysis of olive oil triacylglycerols. J. High Resolut. Chromatogr., 16, 725-730 (1993).
  • Toyo'oka,T., Ishibashi,M. and Terao,T. Fluorescent chiral derivatization reagents for carboxilic acid enantiomers in HPLC. Analyst, 117, 727-733 (1992).
  • Tsuchida,S., Kawamoto,K., Nunome,K., Hamaue,N., Hui,S.-P., Murai,T., Aoki,T. and Kurosawa,T. Chiral separation, determination of absolute configuration, and high-performance liquid chromatography detection of enantiomeric 3-hydroxyhexadecanoyl-coA. J. Oleo Sci., 60, 87-92 (2011).
  • Ueda,J., Miyamoto,K., and Kamisaka,S., Separation of a new type of plant growth regulator, jasmonates, by chromatographic procedures. J. Chromatogr. A, 658, 129-142 (1994).
  • Uzawa,H., Noguchi,T., Nishida,Y., Ohrui,H. and Meguro,H. Determination of the lipase stereoselectivities using circular dichroism (CD) - lipases produce chiral di-O-acylglycerols from achiral tri-O-acylglycerol. Biochim. Biophys. Acta, 1168, 253-260 (1993).
  • Uzawa,H., Ohrui,H., Meguro,H., Mase,T. and Ichida,A. A convenient evaluation of the stereoselectivity of lipase-catalysed hydrolysis of tri-O-acylglycerols on a chiral-phase liquid chromatograph. Biochim. Biophys. Acta, 1169, 165-168 (1993).
  • VanderNoot,V.A. and VanRollins,M. Capillary electrophoresis of cytochrome p-450 epoxygenase metabolites of arachidonic acid. 2. Resolution of stereoisomers. Anal. Chem., 74, 5866-5870 (2002).
  • Venter,P., Kock,J.L.F., Kumar,G.S., Botha,A., Coetzee,D.J., Botes,P.J., Bhatt,R.K., Falck,J.R., Schewe,T. and Nigam,S. Production of 3R-hydroxy-polyenoic fatty acids by the yeast Dipodascopsis uninucleata. Lipids, 32, 1277-1283 (1997).
  • Vichi,S., Pizzale,L and Conte, L.S. Stereospecific distribution of fatty acids in triacylglycerols of olive oils. Eur. J. Lipid Sci. Technol., 109, 72-78 (2007).
  • Vogt,C., Georgi,A. and Werner,G. Enantiomeric separation of D/L-carnitine using HPLC and CZE after derivatization. Chromatographia, 40, 287-295 (1995).
  • Vorderwuhlbecke,T., Epple,M., Cammenga,H.K., Petersen,S. and Kieslich,K. Racemic lactones from butterfat: an advanced approach that includes stereodifferentiation. J. Am. Oil Chem. Soc., 69, 797-801 (1992).
  • Waddington,E., Sienuarine,K., Puddey,I. and Croft,K. Identification and quantitation of unique fatty acid oxidation products in human atherosclerotic plaque using high-performance liquid chromatography. Anal. Biochem., 292, 234-244 (2001).
  • Wadman,M.W., van Zadelhoff,G., Hamberg,M., Visser,T., Veldink,G.A. and Vliegenthart,J.F.G. Conversion of linoleic acid into novel oxylipins by the mushroom Agaricus bisporus. Lipids, 40, 1163-1170 (2005).
  • Wanikawa,A., Shoji,H., Hosoi,K. and Nakagawa,K. Stereospecificity of 10-hydroxystearic acid and formation of 10-ketostearic acid by lactic acid bacteria. J. Am. Soc. Brewing Chem., 60, 14-20 (2002).
  • Watanabe,K., Makino,R., Takahashi,H., Iguchi,K., Ohrui,H. and Akasaka,K. Structure of an unsaturated fatty acid with unique vicinal dimethyl branches isolated from the Okinawan soft coral of the genus Sinularia. Chem. Pharm. Bull., 56, 861-863 (2008).
  • Wei,S., Brittin,J.J., Falck,J.R., Anjaiah,S., Nithipatikom,K., Cui,L., Campbell,W.B. and Capdevila,J.H. Chiral resolution of the epoxyeicosatrienoic acids, arachidonic acid epoxygenase metabolites. Anal. Biochem., 352, 129-134 (2006).
  • Weijers,J.W.H., Schouten,S., Hopmans,E.C., Geenevasen,J.A.J., David,O.R.P., Coleman,J.M., Pancost,R.D. and Damste,J.S.S. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits. Environ. Microbiol., 8, 648-657 (2006).
  • Weil,K., Gruber,P., Heckel,F., Harmsen,D. and Schreier,P. Selective (R)-3-hydroxylation of FA by Stenotrophomonas maltophilia. Lipids, 37, 317-323 (2002).
  • Weil,K., Humpf,H.U., Schwab,W. and Schreier,P. Absolute configuration of 3-hydroxy acids formed by Stenotrophomonas maltophilia: Application of multidimensional gas chromatography and circular dichroism spectroscopy. Chirality, 14, 51-58 (2002).
  • Wiesner,R. and Kuhn,H. HPLC of oxygenated fatty acids including enantiomer separation. In: 'CRC Handbook of Chromatography. Analysis of Lipids'. (ed. K.D. Mukherjee & N. Weber, CRC Press, Boca Raton), pp. 89-100 (1993).
  • Wiswedel,I., Bohne,M., Hirsch,D., Kuhn,H., Augustin,W. and Gollnick,H. A sensitive gas chromatography-mass spectrometry assay reveals increased levels of monohydroxyeicosatetraenoic acid isomers in human plasma after extracorporeal photoimmunotherapy and under in vitro ultraviolet A exposure. J. Invest. Dermatol., 115, 499-503 (2000).
  • Wolff,R.L., Dareville,E. and Martin,J.C. Positional distribution of Delta 5-olefinic acids in triacylglycerols from conifer seed oils: General and specific enrichment in the sn-3 position. J. Am. Oil Chem. Soc., 74, 515-523 (1997).
  • Xiao,Y. and Guengerich, F.P. Metabolomic analysis and identification of a role for the orphan human cytochrome P450 2W1 in selective oxidation of lysophospholipids. J. Lipid Res., 53, 1610-1617 (2012).
  • Yang,L.-Y. and Kuksis,A. Apparent convergence (at 2-monoacylglycerol level) of phosphatidic acid and 2-monoacylglycerol pathways of synthesis of chylomicron triacylglycerols. J. Lipid Res., 32, 1173-1186 (1991).
  • Yang,L.-Y., Kuksis,A. and Myher,J.J. Biosynthesis of chylomicron triacylglycerols by rats fed glyceryl or alkyl esters of menhaden oil fatty acids. J. Lipid Res., 36, 1046-1057 (1995).
  • Yang,L.-Y., Kuksis,A., Myher,J.J. and Steiner,G. Contribution of de novo fatty acid synthesis to very-low-density lipoprotein triacylglycerols: evidence from mass isotopomer distribution analysis of fatty acids synthesized from [H-2(6)]ethanol. J. Lipid Res., 37, 262-274 (1996).
  • Yang,L.-Y., Kuksis,A., Myher,J.J. and Steiner,G. Origin of triacylglycerol moiety of plasma very-low-density lipoproteins in the rat. Structural studies. J. Lipid Res., 36, 125-136 (1995).
  • Yang,Y.L., Yang,F.L., Jao,S.C., Chen,M.Y., Tsay,S.S., Zou,W. and Wu,S.H. Structural elucidation of phosphoglycolipids from strains of the bacterial thermophiles Thermus and Meiothermus. J. Lipid Res., 47, 1823-1832 (2006).
  • Zhang,J.Y. and Blair,I.A. Direct resolution of epoxyeicosatrienoic acid enantiomers by chiral-phase HPLC. J. Chromatogr. B, 657, 23-29 (1994).
  • Zhang,L.-Y. and Hamberg,M. A GLC method for steric analysis of 2-hydroxy, 3-hydroxy and 2,3-dihydroxy acids. Chem. Phys. Lipids, 74, 151-161 (1994).
  • Zhao,Q.C., Lee,S.Y., Hong,J.K., Lee,C.O., Im,K.S., Sim,C.J., Lee,D.S. and Jung,J.H. New acetylenic acids from the marine sponge Stelletta species. J. Nat. Prod., 66, 408-411 (2003).
  • Zhou,X., Xu,T., Wen,K., Yang,X.-W., Xu,S.-H. and Liu,Y. New N-acyl taurine from the sea urchin Glyptocidaris crenularis. Biosci., Biotechnol. Biochem., 74, 1089-1091 (2010).

 

Updated: February 5th, 2014