Literature Survey

Lipidomics

Lipidomics can perhaps best be defined as the analysis of lipids on the systems-level scale together with their interacting factors. The earliest use of the term that I can find was in 2001. As a general discipline, it could be argued that this is not new. What is novel, however, is mass spectrometry methodology that is facilitating comprehensive analyses of complex biological systems. This literature survey is confined to these newer approaches as applied to analysis of complex mixtures of lipid classes (as opposed to molecular species of a single lipid class or 'targeted lipidomics'), on the relatively arbitrary basis of using 'lipidomics' or 'metabolomics' as key words in the title or abstract.

The following references were collected as part of our regular literature reviews for our own research purposes, and therefore reflect our personal research interests. We cannot claim to cover the subject exhaustively, but we do our best. References are listed alphabetically by the first author. Many more relevant references will be found in our separate surveys of advanced mass spectrometric techniques.

  • Adibhatla, R.M., Hatcher,J.F. and Dempsey,R.J. Lipids and lipidomics in brain injury and diseases. AAPS J., 8, E314-E321 (2006).
  • Albert, C.J., Anbukumar,D.S., Monda,J.K., Eckelkamp,J.T. and Ford,D.A. Myocardial lipidomics. Developments in myocardial nuclear lipidomics. Frontiers Biosci., 12, 2750-2760 (2007).
  • Almeida, R., Mosoarca,C., Chirita,M., Udrescu,V., Dinca,N., Vukelic,Z., Allen,M. and Zamfir,A.D. Coupling of fully automated chip-based electrospray ionization to high-capacity ion trap mass spectrometer for ganglioside analysis. Anal. Biochem., 378, 43-52 (2008).
  • Andreyev, A.Y., Fahy,E., Guan,Z.Q., Kelly,S., Li,X.A., McDonald,J.G., Milne,S., Myers,D., Park,H., Ryan,A., Thompson,B.M., Wang,E., Zhao,Y.H., Brown,H.A., Merrill,A.H., Raetz,C.R.H., Russell,D.W., Subramaniam,S. and Dennis,E.A. Subcellular organelle lipidomics in TLR-4-activated macrophages. J. Lipid Res., 51, 2785-2797 (2010).
  • Angelini,R., Vitale, R., Patil, V.A., Cocco, T., Ludwig, B., Greenberg, M.L. and Corcelli, A. Lipidomics of intact mitochondria by MALDI-TOF/MS. J. Lipid Res., 53, 1417-1425 (2012).
  • Astarita, G. and Piomelli,D. Lipidomic analysis of endocannabinoid metabolism in biological samples. J. Chromatogr. B, 877, 2755-2767 (2009).
  • Balgoma, D., Astudillo,A.M., Perez-Chacon,G., Montero,O., Balboa,M.A. and Balsinde,J. Markers of monocyte activation revealed by lipidomic profiling of arachidonic acid-containing phospholipids. J. Immunol., 184, 3857-3865 (2010).
  • Balgoma, D., Checa, A., Sar, D.G., Snowden, S. and Wheelock, C.E. Quantitative metabolic profiling of lipid mediators. Mol. Nutr. Food Res., 57, 1359-1377 (2013).
  • Balgoma, D., Montero,O., Balboa,M.A. and Balsinde,J. Lipidomic approaches to the study of phospholipase A(2)-regulated phospholipid fatty acid incorporation and remodelling. Biochimie, 92, 645-650 (2010).
  • Blanchard, A.P., McDowell, G.S.V., Valenzuela, N., Xu, H.B., Gelbard, S., Bertrand, M., Slater, G.W., Figeys, D., Fai, S. and Bennett, S.A.L. Visualization and Phospholipid Identification (VaLID): online integrated search engine capable of identifying and visualizing glycerophospholipids with given mass. Bioinformatics, 29, 284-285 (2013).
  • Blanksby, S.J. and Mitchell,T.W. Advances in mass spectrometry for lipidomics. Ann. Rev. Anal. Chem., 3, 433-465 (2010).
  • Bartz, R., Li,W.-H., Venables,B., Zehmer,J.K., Roth,M.R., Welti,R., Anderson,R.G.W., Liu,P. and Chapman,K.D. Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J. Lipid Res., 48, 837-847 (2007).
  • Basconcillo, L.S., Zaheer,R., Finan,T.M. and McCarry,B.E. A shotgun lipidomics approach in Sinorhizobium meliloti as a tool in functional genomics. J. Lipid Res., 50, 1120-1132 (2009).
  • Bhattacharya, S.K. Recent advances in shotgun lipidomics and their implication for vision research and ophthalmology. Curr. Eye Res., 38, 417-427 (2013).
  • Bauersachs, T., Compaore,J., Hopmans,E.C., Stal,L.J., Schouten,S. and, Damste,J.S.S. Distribution of heterocyst glycolipids in cyanobacteria. Phytochemistry, 70, 2034-2039 (2009).
  • Bayir,H., Tyurin,V.A., Tyurina,YY., Viner,R., Ritov,V., Amoscato,A.A., Zhao,Q., Zhang,X.J., Janesko-Feldman,K.L., Alexander,H., Basova,L.V., Clark,R.S.B., Kochanek,P.M. and Kagan,V.E. Selective early cardiolipin peroxidation after traumatic brain injury: An oxidative lipidomics analysis. Ann. Neurol., 62, 154-169 (2007).
  • Bielawski,J., Szulc,Z.M., Hannun,Y.A. and Bielawska,A. Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods, 39, 82-91 (2006).
  • Binder,M., Liebisch,G., Langmann,T. and Schmitz,G. Metabolic profiling of glycerophospholipid synthesis in fibroblasts loaded with free cholesterol and modified low density lipoproteins. J. Biol. Chem., 281, 21869-21877 (2006).
  • Bisogno,T., Piscitelli,F. and Di Marzo,V. Lipidomic methodologies applicable to the study of endocannabinoids and related compounds: Endocannabinoidomics. Eur. J. Lipid Sci. Technol., 111, 53-63 (2009).
  • Blaho,V.A., Buczynski,M.W., Brown,C.R. and Dennis,E.A. Lipidomic analysis of dynamic eicosanoid responses during the induction and resolution of Lyme arthritis. J. Biol. Chem., 284, 21599-21612 (2009).
  • Brouwers,J.F. Liquid chromatographic-mass spectrometric analysis of phospholipids. Chromatography, ionization and quantification. Biochim. Biophys. Acta, 1811, 763-775 (2011)
  • Brugger, B., Glass,B., Haberkant,P., Leibrecht,I., Wieland,F.T. and Krasslich,H.G. The HIV lipidome: a raft with an unusual composition. Proc. Natl. Acad. Sci. USA, 103, 2641-2646 (2006).
  • Burgos, A., Szymanski,J., Seiwert,B., Degenkolbe,T., Hannah,M.A., Giavalisco,P. and Willmitzer,L. Analysis of short-term changes in the Arabidopsis thaliana glycerolipidome in response to temperature and light. Plant J., 66, 656-668 (2011).
  • Butovich, I.A. The Meibomian puzzle: Combining pieces together. Progr. Retinal Eye Res., 28, 483-498 (2009).
  • Byrdwell, W.C. Dual parallel liquid chromatography with dual mass spectrometry (LC2/MS2) for a total lipid analysis. Frontiers Biosci., 13, 100-120 (2008).
  • Byrnes, R.W., Fahy,E. and Subramaniam,S. A laboratory information management system for high-throughput experimental lipidomics: minimal information required for the analysis of lipidomics experiments (MIALE). J. Assoc. Lab Automation., 12, 230-238 (2007).
  • Calvano, C.D., Carulli,S. and Palmisano,F. 1H-Pteridine-2,4-dione (lumazine): a new MALDI matrix for complex (phospho)lipid mixtures analysis. Anal. Bioanal. Chem., 398, 499-507 (2010).
  • Carrasco-Pancorbo, A., Navas-Iglesias,N. and Cuadros-Rodriguez,L. From lipid analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part 1: Modern lipid analysis. Trends Anal. Chem., 28, 263-278 (2009).
  • Castro-Perez, J.M., Kamphorst,J., DeGroot,J., Lafeber,F., Goshawk,J., Yu,K., Shockcor,J.P., Vreeken,R.J. and Hankemeier,T. Comprehensive LC-MSE lipidomic analysis using a shotgun approach and its application to biomarker detection and identification in osteoarthritis patients. J. Proteome Res., 9, 2377-2389 (2010).
  • Cha, S., Zhang,H., Ilarslan,H.I., Wurtele,E.S., Brachova,L., Nikolau,B.J. and Yeung,E.S. Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphite-assisted laser desorption ionization mass spectrometry. Plant J., 55, 348-360 (2008).
  • Chan, K., Lanthier,P., Liu,X., Sandhu,J.K., Stanimirovic,D. and Li,J.J. MALDI mass spectrometry imaging of gangliosides in mouse brain using ionic liquid matrix. Anal. Chim. Acta, 639, 57-61 (2009).
  • Chan, R.B., Oliveira, T.G., Cortes, E.P., Honig, L.S., Duff, K.E., Small, S.A., Wenk, M.R., Shui, G.H. and Di Paolo, G. Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. J. Biol. Chem., 287, 2678-2688 (2012).
  • Chen, D.Y., Yan, X.J., Xu, J.L., Su, X.L. and Li, L.J. Lipidomic profiling and discovery of lipid biomarkers in Stephanodiscus sp under cold stress. Metabolomics, 9, 949-959 (2013).
  • Chen, J.Z., Green-Church,K.B. and Nichols,K.K. Shotgun lipidomic analysis of human meibomian gland secretions with electrospray ionization tandem mass spectrometry. Invest. Ophthalmol. Vis. Sci., 51, 6220-6231 (2010).
  • Chen, Y.F., Allegood,J., Liu,Y., Wang,E., Cachon-Gonzalez,B., Cox,T.M., Merrill,A.H. and Sullards,M.C. Imaging MALDI mass spectrometry using an oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay-Sachs/Sandhoff disease. Anal. Chem., 80, 2780-2788 (2008).
  • Chen, Y.F., Liu,Y., Sullards,M.C. and Merrill,A.H. An introduction to sphingolipid metabolism and analysis by new technologies. Neuromol. Med., 12, 306-319 (2010).
  • Cheng, H., Jiang,X. and Han,X. Alterations in lipid homeostasis of mouse dorsal root ganglia induced by apolipoprotein E deficiency: a shotgun lipidomics study. J. Neurochem., 101, 57-76 (2007).
  • Cheng, H., Mancuso,D.J., Jiang,X.T., Guan,S.P., Yang,J.Y., Yang,K., Sun,G., Gross,R.W. and Han,X. Shotgun lipidomics reveals the temporally dependent, highly diversified cardiolipin profile in the mammalian brain: Temporally coordinated postnatal diversification of cardiolipin molecular species with neuronal remodelling. Biochemistry, 47, 5869-5880 (2008).
  • Cheng, H., Xu,J., McKeel,D.W. and Han,X. Specificity and potential mechanism of sulfatide deficiency in Alzheimer's disease: an electrospray ionization mass spectrometric study. Cell. Mol. Biol. 49, 809-818 (2003).
  • Chitraju, C., Trotzmuller, M., Hartler, J., Wolinski, H., Thallinger, G.G., Lass, A., Zechner, R., Zimmermann, R., Kofeler, H.C. and Spener, F. Lipidomic analysis of lipid droplets from murine hepatocytes reveals distinct signatures for nutritional stress. J. Lipid Res., 53, 2141-2152 (2012).
  • Christie, W.W. Lipidomics - A personal view. Lipid Technology, 21, 58-60 (2009).
  • Christie, W.W. and Han, X. Lipid Analysis - Isolation, Separation, Identification and Lipidomic Analysis (4th edition), 446 pages (Oily Press, Bridgwater, U.K. and Woodhead Publishing Ltd, Cambridge, U.K.) (2010) - Woodhead Publishing Ltd.
  • Cifkova, E., Holcapek, M., Lisa, M., Ovcacikova, M., Lycka, A., Lynen, F. and Sandra, P. Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry with single internal standard and response factor approach. Anal. Chem., 84, 10064-10070 (2012).
  • Cifkova, E., Holcapek, M. and Lisa, M. Nontargeted lipidomic characterization of porcine organs using hydrophilic interaction liquid chromatography and off-line two-dimensional liquid chromatography-electrospray ionization mass spectrometry. Lipids, 48, 915-928 (2013).
  • Cui, Z. and Thomas,M.J. Phospholipid profiling by tandem mass spectrometry. J. Chromatogr. B, 877, 2709-2715 (2009).
  • Cvacka, J., Krafkova,E., Jiros,P. and Valterova,I. Computer-assisted interpretation of atmospheric pressure chemical ionization mass spectra of triacylglycerols. Rapid Commun. Mass Spectrom., 20, 3586-3594 (2006).
  • Dashti ,M., Kulik, W., Hoek, F., Veerman, E.C., Peppelenbosch, M.P. and Rezaee, F. A phospholipidomic analysis of all defined human plasma lipoproteins. Scientific Rep., 1, 139 (2011)
  • Davies, S.D. Lipidomic approaches to measuring isoprostanes and other markers of oxidative stress. Eur. J. Lipid Sci. Technol., 111, 64-74 (2009).
  • Deeley, J.M., Mitchell,T.W., Wei,X.J., Korth,J., Nealon,J.R., Blanksby,S.J. and Truscott,R.J.W. Human lens lipids differ markedly from those of commonly used experimental animals. Biochim. Biophys. Acta, 1781, 288-298 (2008).
  • Dennis, E.A. and 27 others A mouse macrophage lipidome. J. Biol. Chem., 285, 39976-39985 (2010).
  • Devaiah, S.P., Roth,M.R., Baughman,E., Li,M.Y., Tamura,P., Jeannotte,R., Welti,R. and Wang,X.M. Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a phospholipase D alpha 1 knockout mutant. Phytochemistry, 67, 1907-1924 (2006).
  • Dill, A.L., Eberlin,L.S., Zheng,C., Costa,A.B., Ifa,D.R., Cheng,L.A., Masterson,T.A., Koch,M.O., Vitek,O. and Cooks,R.G. Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by ambient ionization imaging mass spectrometry. Anal. Bioanal. Chem. 398, 2969-2978 (2010).
  • Ding, J., Sorensen,C.M., Jaitly,N., Jiang,H.L., Orton,D.J., Monroe,M.E., Moore,R.J., Smith,R.D. and Metz,T.O. Application of the accurate mass and time tag approach in studies of the human blood lipidome. J. Chromatogr. B, 871, 243-252 (2008).
  • Donovan, E.L., Pettine, S.M., Hickey, M.S., Hamilton, K.L. and Miller, B.F. Lipidomic analysis of human plasma reveals ether-linked lipids that are elevated in morbidly obese humans compared to lean. Diabetol. Metab. Syndrome, 5, (2013).
  • Doria, M.L., Cotrim, Z., Macedo, B., Simoes, C., Domingues, P., Helguero, L. and Domingues, M.R. Lipidomic approach to identify patterns in phospholipid profiles and define class differences in mammary epithelial and breast cancer cells. Breast Cancer Res. Treatment, 133, 635-648 (2012).
  • Draisma, H.H.M., Reijmers,T.H., Bobeldijk-Pastorova,I., Meulman,J.J., Burk,G.F.E.V., Bartels,M., Ramaker,R., Van der Greef,J., Boomsma,D.I. and Hankemeier,T. Similarities and differences in lipidomics profiles among healthy monozygotic twin pairs. Omics- J. Integrative Biol., 12, 17-31 (2008).
  • Ejsing, C.S., Duchoslav,E., Sampaio,J., Simons,K., Bonner,R., Thiele,C., Ekroos,K. and Shevchenko,A. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal. Chem., 78, 6202-6214 (2006).
  • Ejsing, C.S., Sampaio,J.L., Surendranath,V., Duchoslav,E., Ekroos,K., Klemm,R.W., Simons,K. and Shevchenko,A. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Nat. Acad. Sci. USA, 106, 2136-2141 (2009).
  • Esch, S.W., Williams,T.D., Biswas,S., Chakrabarty,A. and Levine,S.M. Sphingolipid profile in the CNS of the twitcher (globoid cell leukodystrophy) mouse: A lipidomics approach. Cell. Mol. Biol., 49, 779-787 (2003).
  • Fahy, E., Cotter,D., Byrnes,R., Sud,M., Maer,A., Li,J., Nadeau,D., Zhau,Y. and Subramaniam,S. Bioinformatics for lipidomics. Methods Enzymol., 432, 247-273 (2007).
  • Farwanah, H. and Kolter, T. Lipidomics of glycosphingolipids. Metabolites, 2, 134-164 (2012).
  • Farwanah, H., Wirtz,J., Kolter,T., Raith,K., Neubert,R.H.H. and Sandhoff,K. Normal phase liquid chromatography coupled to quadrupole time of flight atmospheric pressure chemical ionization mass spectrometry for separation, detection and mass spectrometric profiling of neutral sphingolipids and cholesterol. J. Chromatogr. B, 877, 2976-2982 (2009).
  • Fauland, A., Kofeler,H., Trotzmuller,M., Knopf,A., Hartler,J., Eberl,A., Chitraju,C., Lankmayr,E. and Spener,F. A comprehensive method for lipid profiling by liquid chromatography-ion cyclotron resonance mass spectrometry. J. Lipid Res., 52, 2314-2322 (2011)
  • Feng, L. and Prestwich,G.D. (Editors). Functional Lipidomics. (Taylor and Francis) (2005).
  • Fernandez, J.A., Ochoa,B., Fresnedo,O., Giralt,M.T. and Rodriguez-Puertas,R. Matrix-assisted laser desorption ionization imaging mass spectrometry in lipidomics. Anal. Bioanal. Chem., 401, 29-51 (2011).
  • Ferreira, C.R., Eberlin, L.S., Hallett, J.E. and Cooks, R.G. Single oocyte and single embryo lipid analysis by desorption electrospray ionization mass spectrometry. J. Mass Spectrom., 47, 29-33 (2012).
  • Fhaner, C.J., Liu, S.C., Ji, H., Simpson, R.J. and Reid, G.E. Comprehensive lipidome profiling of isogenic primary and metastatic colon adenocarcinoma cell lines. Anal. Chem., 84, 8917-8926 (2012).
  • Finnie, S.M., Jeannotte,R. and Faubion,J.M. Quantitative characterization of polar lipids from wheat whole meal, flour, and starch. Cereal Chem., 86, 637-645 (2009).
  • Fischer, C.R., Wilmes, P., Bowen, B.P., Northen, T.R. and Banfield, J.F. Deuterium-exchange metabolomics identifies N-methyl lyso phosphatidylethanolamines as abundant lipids in acidophilic mixed microbial communities. Metabolomics, 8, 566-578 (2012).
  • Forrester, J.S., Milne,S.B., Ivanova,P.T. and Brown,H.A. Computational lipidomics: A multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction. Mol. Pharmacol., 65, 813-821 (2004).
  • Foster, J.M., Moreno, P., Fabregat, A., Hermjakob, H., Steinbeck, C., Apweiler, R., Wakelam, M.J.O. and Vizcaino, J.A. LipidHome: a database of theoretical lipids optimized for high throughput mass spectrometry lipidomics. PLOS One, 8, e61951 (2013).
  • Fuchs, B. and Schiller,J. Application of MALDI-TOF mass spectrometry in lipidomics. Eur. J. Lipid Sci. Technol., 111, 83-98 (2009).
  • Fuchs, B., Schiller,J., Suess,R., Schuerenberg,M. and Suckau,D. A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from egg yolk. Anal. Bioanal. Chem., 389, 827-834 (2007).
  • Fuchs, B., Süß,R. and Schiller,J. An update of MALDI-TOF mass spectrometry in lipid research. Prog. Lipid Res., 49, 450-475 (2010).
  • Fuchs, B., Schiller,J., Suess,R., Zscharnack,M., Bader,A., Mueller,P., Schuerenberg,M., Becker,M. and Suckau,D. Analysis of stem cell lipids by offline HPTLC-MALDI-TOF MS. Anal. Bioanal. Chem., 392, 849-860 (2008).
  • Fuller, M., Rozaklis,T., Lovejoy,M., Zarrinkalam,K., Hopwood,J.J. and Melkle,P.J. Glucosylceramide accumulation is not confined to the lysosome in fibroblasts from patients with Gaucher disease. Mol. Genet. Metab., 93, 437-443 (2008).
  • Gallart-Ayala, H., Courant, F., Severe, S., Antignac, J.P., Morio, F., Abadie, J. and Le Bizec, B. Versatile lipid profiling by liquid chromatography-high resolution mass spectrometry using all ion fragmentation and polarity switching. Preliminary application for serum samples phenotyping related to canine mammary cancer. Anal. Chim. Acta, 796, 75-83 (2013).
  • Gao, X.L., Zhang, Q.B., Meng, D., Isaac, G., Zhao, R., Fillmore, T.L., Chu, R.K., Zhou, J.Y., Tang, K.Q., Hu, Z.P., Moore, R.J., Smith, R.D., Katze, M.G. and Metz, T.O. A reversed-phase capillary ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) method for comprehensive top-down/bottom-up lipid profiling. Anal. Bioanal. Chem., 402, 2923-2933 (2012).
  • Gaudin, M., Imbert, L., Libong, D., Chaminade, P., Brunelle, A., Touboul, D. and Laprevote, O. Atmospheric pressure photoionization as a powerful tool for large-scale lipidomic studies. J. Am. Soc. Mass Spectrom., 23, 869-879 (2012).
  • German, J.B., Gillies,L.A., Smilowitz,J.T., Zivkovic,A.M. and Watkins,S.M. Lipidomics and lipid profiling in metabolomics. Current Opinion Lipidology, 18, 66-71 (2007).
  • Giovane, A., Balestrieri,A. and Napoli,C. New insights into cardiovascular and lipid metabolomics. J. Cell. Biochem., 105, 648-654 (2008).
  • Girod, M., Shi,Y.Z., Cheng,J.X. and Cooks,R.G. Mapping lipid alterations in traumatically injured rat spinal cord by desorption electrospray ionization imaging mass spectrometry. Anal. Chem., 83, 207-215 (2011).
  • Girod, M., Shi,Y.Z., Cheng,J.X. and Cooks,R.G. Desorption electrospray ionization imaging mass spectrometry of lipids in rat spinal cord J. Am. Soc. Mass Spectrom., 21, 1177-1189 (2010).
  • Gopalakrishnan, G., Awasthi, A., Belkaid, W., De Faria, O., Liazoghli, D., Colman, D.R. and Dhaunchak, A.S. Lipidome and proteome map of myelin membranes. J. Neurosci. Res., 91, 321-334 (2013).
  • Goto-Inoue, N., Hayasaka,T., Taki,T., Gonzalez,T.V. and Setou,M. A new lipidomics approach by thin-layer chromatography-blot-matrix-assisted laser desorption/ionization imaging mass spectrometry for analyzing detailed patterns of phospholipid molecular species. J. Chromatogr. A, 1216, 7096-7101 (2009).
  • Goto-Inoue, N., Hayasaka,T., Zaima,N. and Setou,M. Imaging mass spectrometry for lipidomics. Biochim. Biophys. Acta, 1811, 961-969 (2011)
  • Guan, X.L., Cestra, G., Shui, G.H., Kuhrs, A., Schittenhelm, R.B., Hafen, E., van der Goot, F.G., Robinett, C.C., Gatti, M., Gonzalez-Gaitan, M. and Wenk, M.R. Biochemical membrane lipidomics during Drosophila development. Developmental Cell, 24, 98-111 (2013).
  • Guo, X.H. and Lankmayr,E. Multidimensional approaches in LC and MS for phospholipid bioanalysis. Bioanalysis, 2, 1109-1123 (2010).
  • Graessler, J., Schwudke,D., Schwarz,P.E.H., Herzog,R., Shevchenko,A. and Bornstein,S.R. Top-down lipidomics reveals ether lipid deficiency in blood plasma of hypertensive patients. PLOS One, 4, e6261 (2009).
  • Griffiths, W.J. and Wang,Y. Sterol lipidomics in health and disease: Methodologies and applications. Eur. J. Lipid Sci. Technol., 111, 14-38 (2009).
  • Griffiths, W.J. and Wang,Y.Q. Mass spectrometry: from proteomics to metabolomics and lipidomics. Chem. Soc. Rev., 38, 1882-1896 (2009).
  • Griffiths, W.J., Ogundare,M., Williams,C.M. and Wang,Y.Q. On the future of ‘omics’: lipidomics. J. Inher. Metab. Dis., 34, 583-592 (2011).
  • Gross, R.W. and Han,X. Shotgun lipidomics of neutral lipids as an enabling technology for elucidation of lipid-related diseases. Am. J. Physiol.-Endocrinol. Metab., 297, E297-E303 (2009).
  • Gross, R.W. and Han,X. Lipidomics in diabetes and the metabolic syndrome. Methods Enzymol., 433, 73-90 (2007).
  • Gross, R.W. and Han,X. Lipidomics at the interface of structure and function in systems biology. Chem. Biol., 18, 284-291 (2011).
  • Gross, R.W., Jenkins,C.M., Yang,J.Y., Mancuso,D.J. and Han,X. Functional lipidomics: the roles of specialized lipids and lipid-protein interactions in modulating neuronal function. Prostaglandins Other Lipid Mediators, 77, 52-64 (2005).
  • Guan, X.L. and Wenk, M.R. Targeted and non-targeted analysis of membrane lipids using mass spectrometry. Methods Cell Biol., 108, 149-172 (2012).
  • Guan, X.L. and Wenk,M.R. Mass spectrometry-based profiling of phospholipids and sphingolipids in extracts from Saccharomyces cerivisiae. Yeast, 23, 465-477 (2006).
  • Guan, Z., Johnston, N.C., Raetz, C.R.H., Johnson, E.A. and Goldfine, H. Lipid diversity among botulinum neurotoxin-producing clostridia. Microbiology, 158, 2577-2584 (2012).
  • Gupta, S., Maurya,M.R., Merrill,A.H., Glass,C.K. and Subramaniam,S. Integration of lipidomics and transcriptomics data towards a systems biology model of sphingolipid metabolism. BMC Systems Biol., 5, 26 (2011).
  • Haimi, P., Uphoff,A., Hermansson,M and Somerharju,P. Software tools for analysis of mass spectrometric lipidome data. Anal. Chem., 78, 8324-8331 (2006).
  • Hammad, S.M., Pierce,J.S., Soodavar,F., Smith,K.J., Al Gadban,M.M., Rembiesa,B., Klein,R.L., Hannun,Y.A., Bielawski,J. and Bielawska,A. Blood sphingolipidomics in healthy humans: impact of sample collection methodology. J. Lipid Res., 51, 3074-3087 (2010).
  • Han, P.P. and Yuan,Y.J. Lipidomic analysis reveals activation of phospholipid signaling in mechanotransduction of Taxus cuspidata cells in response to shear stress. FASEB J., 23, 623-630 (2009).
  • Han, X. Multi-dimensional mass spectrometry-based shotgun lipidomics and the altered lipids at the mild cognitive impairment stage of Alzheimer's disease. Biochim. Biophys. Acta, 1801, 774-783 (2010).
  • Han, X. An update on lipidomics: Progress and application in biomarker and drug development. Current Opinion Mol. Therapeutics, 9, 586-591 (2007).
  • Han, X. Potential mechanisms contributing to sulfatide depletion at the earliest clinically recognizable stage of Alzheimer's disease: a tale of shotgun lipidomics. J. Neurochem., 103, 171-179 (2007).
  • Han, X. Neurolipidomics: challenges and developments. Frontiers Biosci., 12, 2601-2615 (2007).
  • Han, X. and Cheng,H. Characterization and direct quantitation of cerebroside molecular species from lipid extracts by shotgun lipidomics. J. Lipid Res., 46, 163-175 (2005).
  • Han, X. and Gross,R.W. Toward total cellular lipidome analysis by ESI mass spectrometry from a crude lipid extract. In 'Modern Methods for Lipid Analysis by Liquid Chromatography/Mass Spectrometry and Related Techniques' (Ed. W.C. Byrdwell, AOCS Press, Champaign), pp. 488-509 (2005).
  • Han, X. and Gross,R.W. Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev. Proteomics, 2, 253-264 (2005).
  • Han, X. and Gross,R.W. Shotgun lipidomics: Electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev., 24, 367-412 (2005).
  • Han, X. and Gross,R.W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J. Lipid Res., 44, 1071-1079 (2003).
  • Han, X. and Jiang,X. A review of lipidomic technologies applicable to sphingolipidomics and their relevant applications Eur. J. Lipid Sci. Technol., 111, 39-52 (2009).
  • Han, X., Cheng,H., Mancuso,D.J. and Gross,R.W. Caloric restriction results in phospholipid depletion, membrane remodeling, and triacylglycerol accumulation in murine myocardium. Biochemistry, 43, 15584-15594 (2004).
  • Han, X., Rozen,S., Boyle,S.H., Hellegers,C., Cheng,H., Burke,J.R., Welsh-Bohmer,K.A., Doraiswamy,P.M. and Kaddurah-Daouk,R. Metabolomics in early Alzheimer's disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLOS One, 6, e21643 (2011).
  • Han, X., Yang,J.Y., Cheng,H., Yang,K., Abendschein,D.R. and Gross,R.W. Shotgun lipidomics identifies cardiolipin depletion in diabetic myocardium linking altered substrate utilization with mitochondrial dysfunction. Biochemistry, 44, 16684-16694 (2005).
  • Han, X., Yang,J.Y., Cheng,H., Ye,H.P. and Gross,R.W. Toward fingerprinting cellular lipidomes directly from biological samples by two-dimensional electrospray ionization mass spectrometry. Anal. Biochem., 330, 317-331 (2004).
  • Han, X., Yang,K. and Gross,R.W. Microfluidics-based electrospray ionization enhances the intrasource separation of lipid classes and extends identification of individual molecular species through multi-dimensional mass spectrometry: development of an automated high-throughput platform for shotgun lipidomics. Rapid Commun. Mass Spectrom., 22, 2115-2124 (2008).
  • Han, X., Yang,J., Yang,K., Zhao,Z., Abendschein,D.R. and Gross,R.W. Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: A shotgun lipidomics study. Biochemistry, 46, 6417-6428 (2007).
  • Han, X., Yang, K. and Gross, R.W. Multi-dimensional mass spectrometry-based shotgun lipidomics and novel strategies for lipidomic analyses. Mass Spectrom. Rev., 31,134-178 (2012).
  • Han, X., Yang,K., Yang,J., Cheng,H. and Gross,R.W. Shotgun lipidomics of cardiolipin molecular species in lipid extracts of biological samples. J. Lipid Res., 47, 864-879 (2006).
  • Han, X., Yang,K., Cheng,H., Fikes,K.N. and Gross,R.W. Shotgun lipidomics of phosphoethanolamine-containing lipids in biological samples after one-step in situ derivatization. J. Lipid Res., 46, 1548-1560 (2005).
  • Han, X., Yang,K., Yang,J.Y., Fikes,K.N., Cheng,H. and Gross,R.W. Factors influencing the electrospray intrasource separation and selective ionization of glycerophospholipids. J. Am. Soc. Mass Spectrom., 17, 264-274 (2006).
  • Harkewicz, R. and Dennis,E.A. Applications of mass spectrometry to lipids and membranes. Annu. Rev. Biochem., 80, 301-325 (2011).
  • Hart, P.J., Francese,S., Claude,E., Woodroofe,M.N. and Clench,M.R. MALDI-MS imaging of lipids in ex vivo human skin. Anal. Bioanal. Chem., 401, 115-125 (2011).
  • Hartler, J., Tharakan, R., Kofeler, H.C., Graham, D.R. and Thallinger, G.G. Bioinformatics tools and challenges in structural analysis of lipidomics MS/MS data. Briefings Bioinform., 14, 375-390 (2013).
  • Hartler, J., Trotzmuller,M., Chitraju,C., Spener,F., Kofeler,H.C. and Thallinger,G.G. Lipid Data Analyzer: unattended identification and quantitation of lipids in LC-MS data. Bioinformatics, 27, 572-577 (2011).
  • Haynes,C.A., Allegood,J.C., Park,H. and Sullards,M.C. Sphingolipidomics: Methods for the comprehensive analysis of sphingolipids. J. Chromatogr. B, 877, 2696-2708 (2009).
  • He,H., Conrad,C.A., Nilsson,C.L., Ji,Y., Schaub,T.M., Marshall,A.G. and Emmett,M.R. Method for lipidomic analysis: p53 expression modulation of sulfatide, ganglioside, and phospholipid composition of U87 MG glioblastoma cells. Anal. Chem., 79, 8423-8430 (2007).
  • He,H., Emmett,M.R., Nilsson,C.L., Conrad,C.A. and Marshall,A.G. High mass accuracy and resolution facilitate identification of glycosphingolipids and phospholipids. Int. J. Mass Spectrom., 305, 116-119 (2011).
  • Hejazi,L., Wong,J.H.W., Cheng,D., Proschogo,N., Ebrahimi,D., Garner,B. and Don,A.S. Mass and relative elution time profiling: two-dimensional analysis of sphingolipids in Alzheimer's disease brains. Biochem. J., 438, 165–175 (2011).
  • Hermansson,M., Uphoff,A., Kakela,R. and Somerharju,P. Automated quantitative analysis of complex lipidomes by liquid chromatography/mass spectrometry. Anal. Chem., 77, 2166-2175 (2005).
  • Herzog,R., Schuhmann, K., Schwudke, D., Sampaio, J.L., Bornstein, S.R., Schroeder, M. and Shevchenko, A LipidXplorer: a software for consensual cross-platform lipidomics. PLOS One, 7, e29851 (2012).
  • Herzog,R., Schwudke,D., Schuhmann,K., Sampaio,J.L., Bornstein,S.R., Schroeder,M. and Shevchenko,A. A novel informatics concept for high-throughput shotgun lipidomics based on the molecular fragmentation query language. Genome Biology, 12, R8 (2011).
  • Horn, P.J. and Chapman, K.D. Lipidomics in tissues, cells and subcellular compartments. Plant J., 70, 69-80 (2012).
  • Houjou, T., Yamatani,K., Imagawa,M., Shimizu,T. and Taguchi,R. A shotgun tandem mass spectrometric analysis of phospholipids with normal-phase and/or reverse-phase liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom., 19, 654-666 (2005).
  • Hsu, F.-F. and Turk,J. Electrospray ionization with low-energy collisionally activated dissociation tandem mass spectrometry of glycerophospholipids: Mechanisms of fragmentation and structural characterization. J. Chromatogr. B, 877, 2673-2695 (2009).
  • Hu, C.X., van der Heijden,R., Wang,M., van der Greef,J., Hankemeier,T. and Xua,G.W. Analytical strategies in lipidomics and applications in disease biomarker discovery. J. Chromatogr. B, 877, 2836-2846 (2009).
  • Hughes, J.R., Deeley, J.M., Blanksby, S.J., Leisch, F., Ellis, S.R., Truscott, R.J.W. and Mitchell, T.W. Instability of the cellular lipidome with age. Age, 34, 935-947 (2012).
  • Hummel, J., Segu,S., Li,Y., Irgang,S., Jueppner,J. and Giavalisco,P. Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids. Front. Plant Sci., 2, article 54 (2011)
  • Hunt, A.N. Completing the cycles; the dynamics of endonuclear lipidomics. Biochim. Biophys. Acta, 1761, 577-587 (2006).
  • Hunt, A.N. Dynamic lipidomics of the nucleus. J. Cell. Biochem., 97, 244-251 (2006).
  • Hunt, A.N. and Postle,A.D. Mass spectrometry determination of endonuclear phospholipid composition and dynamics. Methods, 39, 104-111 (2006).
  • Hunt, A.N. and Postle,A.D. Dynamic lipidomic insights into phosphatidylcholine synthesis from organelle to organism. Spectroscopy, 19, 127-135 (2005).
  • Husen, P., Tarasov, K., Katafiasz, M., Sokol, E., Vogt, J., Baumgart, J., Nitsch, R., Ekroos, K. and Ejsing, C.S. Analysis of lipid experiments (ALEX): a software framework for analysis of high-resolution shotgun lipidomics data. PLOS One, 8, e79736 (2013).
  • Hyotylainen, T., Bondia-Pons, I. and Oresic, M. Lipidomics in nutrition and food research. Mol. Nutr. Food Res., 57, 1306-1318 (2013).
  • Ikeda, K., Taguchi, R. and Soga, T. Establishment of basic lipidomics platforms for discovery of lipid biomarkers. Bunseki Kagaku, 61, 501-512 (2012).
  • Imbert, L., Gaudin, M., Libong, D., Touboul, D., Abreu, S., Loiseau, P.M., Laprevote, O. and Chaminade, P. Comparison of electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization for a lipidomic analysis of Leishmania donovani. J. Chromatogr. A, 1242, 75-83 (2012).
  • Ivanova, P.T., Milne,S.B., Forrester,J.S. and Brown,H.A. LIPID Arrays: new tools in the understanding of membrane dynamics and lipid signalling. Mol. Interv., 4, 86-96 (2004).
  • Ivanova, P.T., Milne,S.B., Myers,D.S. and Brown,H.A. Lipidomics: a mass spectrometry based systems level analysis of cellular lipids. Curr. Opin. Chem. Biol., 13, 526-531 (2009).
  • Jackson, S.N., Ugarov,M., Egan,T., Post,J.D., Langlais,D., Schultz,J.A. and Woods,A.S. MALDI-ion mobility-TOFMS imaging of lipids in rat brain tissue. J. Mass Spectrom., 42, 1093-1098 (2007).
  • Jackson, S.N., Wang,H.-Y.J. and Woods,A.S. In situ structural characterization of glycerophospholipids and sulfatides in brain tissue using MALDI-MS/MS. J. Am. Soc. Mass Spectrom., 18, 17-26 (2007).
  • Jain, S., Jayasimhulu,K. and Clark,J.F. Metabolomic analysis of molecular species of phospholipids from normotensive and preeclamptic human placenta electrospray ionization mass spectrometry. Frontiers Biosci., 9, 3167-3175 Suppl. S (2004).
  • Jeong, R.U., Lim,S., Kim,M.O. and Moon,M.H. Effect of d-allose on prostate cancer cell lines: phospholipid profiling by nanoflow liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 401, 689-698 (2011).
  • Jiang, X., Cheng,H., Yang,K., Gross,R.W. and Han,X. Alkaline methanolysis of lipid extracts extends shotgun lipidomics analyses to the low-abundance regime of cellular sphingolipids. Anal. Biochem., 371, 135-145 (2007).
  • Kagan, V.E., Tyurina,Y.Y., Bayir,H., Chu,C.T., Kapralov,A.A., Vlasova,I.I., Belikova,N.A., Tyurin,V.A., Amoscato,A., Epperly,M., Greenberger,J., Dekosky,S., Shvedova,A.A. and Jiang,J. The "pro-apoptotic genies" get out of mitochondria: oxidative lipidomics and redox activity of cytochrome c/cardiolipin complexes. Chem. Biol. Interact., 163, 15-28 (2006).
  • Khalil, M.B., Hou,W.M., Zhou,H., Elisma,F., Swayne,L.A., Blanchard,A.P., Yao,Z.M., Bennett,S.A.L. and Figeys,D. Lipidomics era: accomplishments and challenges. Mass Spectrom. Rev., 29, 877-929 (2010).
  • Kiebish, M.A., Han,X., Cheng,H., Lunceford,A., Clarke,C.F., Moon,H., Chuang,J.H. and Seyfried,T.N. Lipidomic analysis and electron transport chain activities in C57BL/6J mouse brain mitochondria. J. Neurochem., 106, 299-312 (2008).
  • Kim, K.H., Lee, J.Y., Lim, S. and Moon, M.H. Top-down lipidomic analysis of human lipoproteins by chip-type asymmetrical flow field-flow fractionation-electrospray ionization-tandem mass spectrometry. J. Chromatogr. A, 1280, 92-97 (2013).
  • Kind, T., Liu, K.H., Lee, D.Y., DeFelice, B., Meissen, J.K. and Fiehn, O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nature Methods, 10, 755-758 (2013).
  • Kirsch, S., Zarei,M., Cindric,M., Muthing,J., Bindila,L. and Peter-Katalinic,J. On-line nano-HPLC/ESI QTOF MS and tandem MS for separation, detection, and structural elucidation of human erythrocytes neutral glycosphingolipid mixture. Anal. Chem., 80, 4711-4722 (2008).
  • Kishimoto, K., Urade,R., Ogawa,T. and Moriyama T. Nondestructive quantification of neutral lipids by thin-layer chromatography and laser-fluorescent scanning: Suitable methods for 'lipidome' analysis. Biochem. Biophys. Res. Commun., 281, 657-662 (2001).
  • Klemm,R.W., Ejsing,C.S., Surma,M.A., Kaiser,H.-J., Gerl,M.J., Sampaio,J.L., de Robillard,Q., Ferguson,C., Proszynski,T.J., Shevchenko,A. and Simons,K. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J. Cell Biol., 185, 601-612 (2009).
  • Kliman, M., May,J.C. and McLean,J.A. Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim. Biophys. Acta, 1811, 935-945 (2011)
  • Klose, C., Surma, M.A., Gerl, M.J., Meyenhofer, F., Shevchenko, A. and Simons, K. Flexibility of a eukaryotic lipidome - insights from yeast lipidomics. PLOS One, 7, e35063 (2012).
  • Köfeler, H.C., Fauland, A., Rechberger, G.N. and Trötzmüller, M. Mass spectrometry based lipidomics: an overview of technological platforms. Metabolites, 2, 19-38 (2012).
  • Koulman, A., Woffendin,G., Narayana,V.K., Welchman,H., Crone,C. and Volmer,D.A. High-resolution extracted ion chromatography, a new tool for metabolomics and lipidomics using a second-generation orbitrap mass spectrometer. Rapid Commun. Mass Spectrom., 23, 1411-1418 (2009).
  • Kuksis, A. and Itabashi,Y. Regio- and stereospecific analysis of glycerolipids. Methods, 36, 172-185 (2005).
  • Kuksis, A., Suomela,J.P., Tarvainen,M. and Kallio,H. Lipidomic analysis of glycerolipid and cholesteryl ester autooxidation products. Mol. Biotech., 42, 224-268 (2009).
  • Kulkarni, H., Meikle, P.J., Mamtani, M., Weir, J.M., Barlow, C.K., Jowett, J.B., Bellis, C., Dyer, T.D., Johnson, M.P., Rainwater, D.L., Almasy, L., Mahaney, M.C., Comuzzie, A.G., Blangero, J. and Curran, J.E. Plasma lipidomic profile signature of hypertension in Mexican American families: specific role of diacylglycerols. Hypertension, 62, 621-626 (2013).
  • Lagarde, M., Bernoud-Hubac, N., Calzada, C., Véricel, E. and Guichardant, M. Lipidomics of essential fatty acids and oxygenated metabolites Mol. Nutr. Food Res., 57, 1347-1358 (2013).
  • Lamaziere, A., Wolf, C. and Quinn, P.J. Perturbations of lipid metabolism indexed by lipidomic biomarkers. Metabolites, 2, 1-18 (2012).
  • Landgraf, R.R., Garrett,T.J., Conaway,M.C.P., Calcutt,N.A., Stacpoole,P.W. and Yost,R.A. Considerations for quantification of lipids in nerve tissue using matrix-assisted laser desorption/ionization mass spectrometric imaging. Rapid Commun. Mass Spectrom., 25, 3178-3184 (2011).
  • Layre, E., Cala-De Paepe,D., Larrouy-Maumus,G., Vaubourgeix,J., Mundayoor,S., Lindner,B., Puzo,G. and Gilleron,M. Deciphering sulfoglycolipids of Mycobacterium tuberculosis. J. Lipid Res., 52, 1098-1110 (2011).
  • Lee, S.H., Williams,M.V. and Blair,I.A. Targeted chiral lipidomics analysis. Prostaglandins Other Lipid Mediators, 77, 141-157 (2005).
  • Lee, S.H., Williams,M.V., DuBois,R.N. and Blair,I.A. Targeted lipidomics using electron capture atmospheric pressure chemical ionization mass spectrometry. Rapid Commun. Mass Spectrom., 17, 2168-2176 (2003).
  • Levery, S.B. Glycosphingolipid structural analysis and glycosphingolipidomics. Methods Enzymol., 405, 300-369 (2005).
  • Li, F., Qin, X.Z., Chen, H.Q., Qiu, L., Guo, Y.M., Liu, H., Chen, G.Q., Song, G.G., Wang, X.D., Li, F.J., Guo, S., Wang, B.H. and Li, Z.L. Lipid profiling for early diagnosis and progression of colorectal cancer using direct-infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom., 27, 24-34 (2013).
  • Li, J., Cui,Z., Zhao,S. and Sidman,R.L. Unique glycerophospholipid signature in retinal stem cells correlates with enzymatic functions of diverse long-chain Acyl-CoA synthetases. Stem Cells, 25, 2864-2873 (2007).
  • Li, M., Feng, B.S., Liang, Y., Zhang, W., Bai, Y., Tang, W., Wang, T. and Liu, H.W. Lipid profiling of human plasma from peritoneal dialysis patients using an improved 2D (NP/RP) LC-QToF MS method. Anal. Bioanal. Chem., 405, 6629-6638 (2013).
  • Li, M., Zhou,ZG., Nie,HG., Bai,Y. and Liu,H.W. Recent advances of chromatography and mass spectrometry in lipidomics. Anal. Bioanal. Chem., 399, 243-249 (2011).
  • Li, N.J., Liu,W.T., Li,W., Li,S.Q., Chen,X.H., Bi,K.S. and He,P. Plasma metabolic profiling of Alzheimer's disease by liquid chromatography/mass spectrometry. Clin. Biochem., 43, 992-997 (2010).
  • Li, Y.L., Su,X., Stahl,P.D. and Gross,M.L. Quantification of diacylglycerol molecular species in biological samples by electrospray ionization mass spectrometry after one-step derivatization. Anal. Chem., 79, 1569-1574 (2007).
  • Li, Y.S., Thapa,P., Hawke,D., Kondo,Y., Furukawa,K., Furukawa,K., Hsu,F.-F., Adlercreutz,D., Weadge,J., Palcic,M.M., Wang,P.G., Levery,S.B. and Zhou,D.P. Immunologic glycosphingolipidomics and NKT cell development in mouse thymus. J. Proteome Res., 8, 2740-2751 (2009).
  • Li, Y.S., Zhou,D.P., Xia,C.F., Wang,P.G. and Levery,S.B. Sensitive quantitation of isoglobotriaosylceramide in the presence of isobaric components using electrospray ionization-ion trap mass spectrometry. Glycobiology, 18, 166-176 (2008).
  • Lindberg, L., Santos, A.X.S., Riezman, H., Olsson, L. and Bettiga, M. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress. PLOS One, 8, e73936 (2013).
  • Lisa, M., Cifkova,E. and Holcapek,M. Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography mass spectrometry. J. Chromatogr. A, 1218, 5146-5156 (2011).
  • Llorente, A., Skotland, T., Sylvanne, T., Kauhanen, D., Rog, T., Orlowski, A., Vattulainen, I., Ekroos, K. and Sandvig, K. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim. Biophys. Acta, 1831, 1302-1309 (2013).
  • Lobasso, S., Lopalco, P., Angelini, R., Baronio,M., Fanizzi,F.P., Babudri,F. and Corcelli,A. Lipidomic analysis of porcine olfactory epithelial membranes and cilia. Lipids, 45, 593-602 (2010).
  • Lobasso, S., Lopalco, P., Angelini, R., Vitale, R., Huber, H., Muller, V. and Corcelli, A. Coupled TLC and MALDI-TOF/MS analyses of the lipid extract of the hyperthermophilic archaeon Pyrococcus furiosus. Archaea, 957852 (2012).
  • Lorizate, M., Sachsenheimer, T., Glass, B., Habermann, A., Gerl, M.J., Krausslich, H.G. and Brugger, B. Comparative lipidomics analysis of HIV-1 particles and their producer cell membrane in different cell lines. Cell. Microbiol., 15, 292-304 (2013).
  • Lu, N., Wei, D., Chen, F. and Yang, S.T. Lipidomic profiling and discovery of lipid biomarkers in snow alga Chlamydomonas nivalis under salt stress. Eur. J. Lipid Sci. Technol., 114, 253-265 (2012).
  • Lu, Y., Hong,S., Gotlinger,K. and Serhan,C.N. Lipid mediator informatics and proteomics in inflammation resolution. TheScientificWorldJOURNAL, 6, 589-614 (2006).
  • Machesky, N.J., Zhang,G., Raghavan,B., Zimmerman,P., Kelly,S.L., Merrill,A.H., Waldman,W.J., Van Brocklyn,J.R. and Trgovcich,J. Human cytomegalovirus regulates bioactive sphingolipids. J. Biol. Chem., 283, 26148-26160 (2008).
  • Mahrous, E.A., Lee,R.B. and Lee,R.E. A rapid approach to lipid profiling of mycobacteria using 2D HSQC NMR maps. J Lipid Res., 49, 455-463 (2008).
  • Masoodi, M. and Nicolaou,A. Lipidomic analysis of twenty-seven prostanoids and isoprostanes by liquid chromatography/electrospray tandem mass spectrometry. Rapid Commun. Mass Spectrom., 20, 3023-3029 (2006).
  • Masoodi, M., Eiden,M., Koulman,A., Spaner,D. and Volmer,D.A. Comprehensive lipidomics analysis of bioactive lipids in complex regulatory networks. Anal. Chem., 82, 8176-8185 (2010).
  • Masterson, T.A., Dill,A.L., Eberlin,L.S., Mattarozzi,M., Cheng,L., Beck,S.D.W., Bianchi,F. and Cooks,R.G. Distinctive glycerophospholipid profiles of human seminoma and adjacent normal tissues by desorption electrospray ionization imaging mass spectrometry. J. Am. Soc. Mass Spectrom., 22, 1326-1333 (2011).
  • McDonnell, L.A. and Heeren,R.M. Imaging mass spectrometry. Mass Spectrom. Rev., 26, 606-643 (2007).
  • McMahon,A., Butovich,I.A., Mata,N.L., Klein,M., Ritter,R., Richardson,J., Birch,D.G., Edwards,A.O. and Kedzierski,W. Retinal pathology and skin barrier defect in mice carrying a Stargardt disease-3 mutation in elongase of very long chain fatty acids-4. Mol. Vision, 13, 258-272 (2007).
  • Meikle,P.J., Wong,G., Tsorotes,D., Barlow,C.K., Weir,J.M., Christopher,M.J., MacIntosh,G.L., Goudey,B., Stern,L., Kowalczyk,A., Haviv,I., White,A.J., Dart,A.M., Duffy,S.J., Jennings,G.L. and Kingwell,B.A. Plasma lipidomic analysis of stable and unstable coronary artery disease. Arterioscler, Thromb, Vasc, Biol., 31, 2723-2732 (2011)
  • Merrill,A.H. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem. Rev., 111, 6387-6422 (2011).
  • Merrill,A.H., Stokes,T.H., Momin,A., Park,H., Portz,B.J., Kelly,S., Wang,E., Sullards,M.C. and Wang,M.D. Sphingolipidomics: a valuable tool for understanding the roles of sphingolipids in biology and disease. J. Lipid Res., 50, S97-S102 (2009).
  • Merrill,A.H., Sullards,M.C., Allegood,J.C., Kelly,S. and Wang,E. Sphingolipidomics: High-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods, 36, 207-224 (2005).
  • Milne,S., Ivanova,P., Forrester,J. and Brown,H.A. Lipidomics: An analysis of cellular lipids by ESI-MS. Methods, 39, 92-103 (2006).
  • Min,H.K., Lim,S., Chung,B.C. and Moon,M.H. Shotgun lipidomics for candidate biomarkers of urinary phospholipids in prostate cancer. Anal. Bioanal. Chem., 399, 823-830 (2011).
  • Mitchell,T.W., Buffenstein,R. and Hulbert,A.J. Membrane phospholipid composition may contribute to exceptional longevity of the naked mole-rat (Heterocephalus glaber): A comparative study using shotgun lipidomics. Exp. Geront., 42, 1053-1062 (2007).
  • Momin,A.A., Park,H., Portz,B.J., Haynes,C.A., Shaner,R.L., Kelly,S.L., Jordan,I.K. and Merrill,A.H. "A method for visualization of ""omic"" datasets for sphingolipid metabolism to predict potentially interesting differences." J. Lipid Res., 52, 1073-1083 (2011).
  • Mossoba,M.M. Kramer,J.K.G., Brenna,J.T. and McDonald,R.E. (Editors) Lipid analysis and lipidomics: new techniques and applications. (AOCS Press, Champaign) (2006).
  • Mouritsen,O.G. Life - as a matter of fat. The emerging science of lipidomics. (Springer, Berlin) (2005).
  • Murphy,R.C. and Gaskell,S.J. New applications of mass spectrometry in lipid analysis. J. Biol. Chem., 286, 25427-25433 (2011).
  • Murphy,R.C., Hankin,J.A. and Barkley,R.M. Imaging of lipid species by MALDI mass spectrometry. J. Lipid Res., 50, S317-S322 (2009).
  • Nagahori,N., Abe,M. and Nishimura,S.I. Structural and functional glycosphingolipidomics by glycoblotting with an aminooxy-functionalized gold nanoparticle. Biochemistry, 48, 583-594 (2009).
  • Navas-Iglesias,N., Carrasco-Pancorbo,A. and Cuadros-Rodríguez,L. From lipids analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part II: Analytical lipidomics. Trends, Anal. Chem., 28, 393-403 (2009).
  • Nie,H., Liu,R., Yang,Y., Bai,Y., Guan,Y., Qian,D., Wang,T. and Huwei Liu,H. Lipid profiling of rat peritoneal surface layers by online normal- and reversed-phase 2D LC QToF-MS. J. Lipid Res., 51, 2833-2844 (2010).
  • Niemela,P.S., Castillo,S., Sysi-Aho,M. and Oresic,M. Bioinformatics and computational methods for lipidomics. J. Chromatogr. B, 877, 2855-2862 (2009).
  • Ogiso, H., Suzuki,T. and Taguchi,R. Development of a reverse-phase liquid chromatography electrospray ionization mass spectrometry method for lipidomics, improving detection of phosphatidic acid and phosphatidylserine. Anal. Biochem., 375, 124-131 (2008).
  • Oresic, M. Bioinformatics and computational approaches applicable to lipidomics. Eur. J. Lipid Sci. Technol., 111, 99-106 (2009).
  • Oresic, M., Hanninen,V.A. and Vidal-Puig,A. Lipidomics: a new window to biomedical frontiers. Trends Biotechnol., 26, 647-652 (2008).
  • Pasciak, M., Sanchez-Carballo,P., Duda-Madej,A., Lindner,B., Gamian,A. and Holst,O. Structural characterization of the major glycolipids from Arthrobacter globiformis and Arthrobacter scleromae. Carbohydrate Res., 345, 1497-1503 (2010).
  • Pike, L.J., Han,X. and Gross,R.W. Epidermal growth factor receptors are localized to lipid rafts that contain a balance of inner and outer leaflet lipids : A shotgun lipidomics study. J. Biol. Chem., 280, 26796-26804 (2005).
  • Piomelli, D. The challenge of brain lipidomics. Prostaglandins Other Lipid Mediators, 77, 23-34 (2005).
  • Pizarro, C., Arenzana-Ramila, I., Perez-del-Notario, N., Perez-Matute, P. and Gonzalez-Saiz, J.-M. Plasma lipidomic profiling method based on ultrasound extraction and liquid chromatography mass spectrometry. Anal. Chem., 85, 12085-12092 (2013).
  • Placzek, E.A., Cooper,B.R., Placzek,A.T., Chester,J.A., Davisson,V.J. and Barker,E.L. Lipidomic metabolism analysis of the endogenous cannabinoid anandamide (N-arachidonylethanolamide). J. Pharm. Biomed. Anal., 533, 567-575 (2010).
  • Poad, B.L.J., Pham,H.T., Thomas,M.C., Nealon,J.R., Campbell,J.L., Mitchell,T.W. and Blanksby,S.J. Ozone-induced dissociation on a modified tandem linear ion-trap: observations of different reactivity for isomeric lipids. J. Am. Soc. Mass Spectrom., 21, 1989-1999 (2010).
  • Postle, A.D. Phospholipid lipidomics in health and disease. Eur. J. Lipid Sci. Technol., 111, 2-13 (2009).
  • Postle, A.D. and Hunt,A.N. Dynamic lipidomics with stable isotope labelling. J. Chromatogr. B, 877, 2716-2721 (2009).
  • Postle, A.D., Wilton,D.C., Hunt ,A.N. and Attard,G.S. Probing phospholipid dynamics by electrospray ionisation mass spectrometry. Prog. Lipid Res., 46, 200-224 (2007).
  • Purcaro, G., Tranchida,P.Q., Dugo,P., La Camera,E., Bisignano,G., Conte,L. and Mondello,L. Characterization of bacterial lipid profiles by using rapid sample preparation and fast comprehensive two-dimensional gas chromatography in combination with mass spectrometry. J. Sep. Sci., 33, 2334-2340 (2010).
  • Quehenberger, O. et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res., 51, 3299-3305 (2010).
  • Quehenberger, O., Armando,A., Dumlao,D., Stephens,D.L. and Dennis,E.A. Lipidomics analysis of essential fatty acids in macrophages. Prostaglandins Leukotrienes Essential Fatty Acids, 79, 123-129 (2008).
  • Rainville, P.D., Stumpf,C.L., Shockcor,J.P., Plumb,R.S. and Nicholson,J.K. Novel application of reversed-phase UPLC-oaTOF-MS for lipid analysis in complex biological mixtures: A new tool for lipidomics. J. Proteome Res., 6, 552-558 (2007).
  • Rantamaki, A.H., Seppanen-Laakso,T., Oresic,M., Jauhiainen,M. and Holopainen,J.M. Human tear fluid lipidome: from composition to function. PLOS One, 6, e19553 (2011).
  • Rappley, I., Myers,D.S., Milne,S.B., Ivanova,P.T., LaVoie,M.J., Brown,H.A. and Selkoe,D.J. Lipidomic profiling in mouse brain reveals differences between ages and genders, with smaller changes associated with alpha-synuclein genotype. J. Neurochem., 111, 15-25 (2009).
  • Retra, K., Bleijerveld,O.B., van Gesteil,R.A., Tielens,A.G.M., van Hellemond,J.J. and Brouwers,J.F. A simple and universal method for the separation and identification of phospholipid molecular species. Rapid Commun. Mass Spectrom., 22, 1853-1862 (2008).
  • Richmond, G.S., Gibellini,F., Young,S.A., Major,L., Denton,H., Lilley,A. and Smith,T.K. Lipidomic analysis of bloodstream and procyclic form Trypanosoma brucei. Parasitology, 137, 1357-1392 (2010).
  • Riedelsheimer, C., Brotman, Y., Meret, M., Melchinger, A.E. and Willmitzer, L. The maize leaf lipidome shows multilevel genetic control and high predictive value for agronomic traits. Scientific Rep., 3, 2479 (2013).
  • Roberts, L.D., McCombie,G., Titman,C.M. and Griffin,J.L. A matter of fat: An introduction to lipidomic profiling methods. J. Chromatogr. B, 871, 174-181 (2008).
  • Sabareesh, V. and Singh, G. Mass spectrometry based lipid(ome) analyzer and molecular platform: a new software to interpret and analyze electrospray and/or matrix-assisted laser desorption/ionization mass spectrometric data of lipids: a case study from Mycobacterium tuberculosis. J. Mass Spectrom., 48, 465-477 (2013).
  • Salto, M.L., Kuhlenschmidt,T., Kuhlenschmidt,M., de Lederkremer,RA. and Docampo,R. Phospholipid and glycolipid composition of acidocalcisomes of Trypanosoma cruzi. Mol. Biochem. Parasitol., 158, 120-130 (2008).
  • Sampaio, J.L., Gerl,M.J., Klose,C., Ejsing,C.S., Beug,H., Simons,K. and Shevchenko,A. Membrane lipidome of an epithelial cell line. Proc. Natl. Acad. Sci. USA, 108, 1903-1907 (2011).
  • Sandra, K. and Sandra, P. Lipidomics from an analytical perspective. Curr. Opin. Chem. Biol., 17, 847-853 (2013).
  • Sandra, K., Pereira,A.D., Vanhoenacker,G., David,F. and Sandra,P. Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. A, 1217, 4087-4099 (2010).
  • Santinha, D.R., Marques, D.R., Maciel, E.A., Simoes, C.S.O., Rosa, S., Neves, B.M., Macedo, B., Domingues, P., Cruz, M.T. and Domingues, M.R.M. Profiling changes triggered during maturation of dendritic cells: a lipidomic approach. Anal. Bioanal. Chem., 403, 457-471 (2012).
  • Sato, Y., Nakamura,T., Aoshima,K. and Oda,Y. Quantitative and wide-ranging profiling of phospholipids in human plasma by two-dimensional liquid chromatography/mass spectrometry. Anal. Chem., 82, 9858-9864 (2010).
  • Scandroglio, F., Loberto,N., Valsecchi,M., Chigorno,V., Prinetti,A. and Sonnino,S. Thin layer chromatography of gangliosides. Glycoconjugate J., 26, 961-973 (2009).
  • Schiller, J., Mueller,M., Fuchs,B., Arnold,K. and Huster,D. P-31 NMR Spectroscopy of phospholipids: from micelles to membranes. Curr. Anal. Chem., 3, 283-301 (2007).
  • Schiller, J., Suss,R., Fuchs,B., Muller,M., Zschornig,O. and Arnold,K. MALDI-TOF MS in lipidomics. Frontiers Biosci., 12, 2568-2579 (2007).
  • Schiller, J., Suess,R., Fuchs,B., Mueller,M., Petkovic,M., Zschoernig,O. and Waschipky,H. The suitability of different DHB isomers as matrices for the MALDI-TOF MS analysis of phospholipids: which isomer for what purpose? Eur. Biophys. J. Biophys. Letts, 36, 517-527 (2007).
  • Schmidt, C., Ploier, B., Koch, B. and Daum, G. Analysis of yeast lipid droplet proteome and lipidome. Lipid Droplets, Methods in Cell Biology, 11615-37 (edited by Yang, H. and Li, P. Elsevier Academic Press Inc., San Diego, USA) (2013).
  • Schuhmann, K., Almeida, R., Baumert, M., Herzog, R., Bornstein, S.R. and Shevchenko, A. Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes. J. Mass Spectrom., 47, 96-104 (2012).
  • Schuhmann, K., Herzog,R., Schwudke,D., Metelmann-Strupat,W., Bornstein,S.R. and Shevchenko,A. Bottom-up shotgun lipidomics by higher energy collisional dissociation on LTQ Orbitrap mass spectrometers. Anal. Chem., 83, 5480-5487 (2011).
  • Schwarz, E., Prabakaran,S., Whitfield,P., Major,H., Leweke,F.M., Koethe,D., McKenna,P. and Bahn,S. High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J. Proteome Res., 7, 4266-4277 (2008).
  • Schwudke, D., Hannich,J.T., Surendranath,V., Grimard,V., Moehring,T., Burton,L., Kurzchalia,T. and Shevchenko,A. Top-down lipidomic screens by multivariate analysis of high-resolution survey mass spectra. Anal. Chem., 79, 4083-4093 (2007).
  • Schwudke, D., Schuhmann,K., Herzog,R., Bornstein,S.R. and Shevchenko,A. Shotgun lipidomics on high resolution mass spectrometers. Cold Spring Harbor Persp. Biol., 3, a004614 (2011).
  • Seppanen-Laakso, T. and Oresic,M. How to study lipidomes. J. Mol. Endocrinol., 42, 185-190 (2009).
  • Serb, A., Schiopu,C., Flangea,C., Sisu,E. and Zamfir,A.D. Top-down glycolipidomics: fragmentation analysis of ganglioside oligosaccharide core and ceramide moiety by chip-nanoelectrospray collision-induced dissociation MS2-MS6. J. Mass Spectrom., 44, 1434-1442 (2009).
  • Serb, A., Schiopu,C., Flangea,C., Vukelic,Z., Sisu,E., Zagrean,L. and Zamfir,A.D. High-throughput analysis of gangliosides in defined regions of fetal brain by fully automated chip-based nanoelectrospray ionization multi-stage mass spectrometry. Eur. J. Mass Spectrom., 15, 541-553 (2009).
  • Sewell, G.W., Hannun, Y.A., Han, X.L., Koster, G., Bielawski, J., Goss, V., Smith, P.J., Rahman, F.Z., Vega, R., Bloom, S.L., Walker, A.P., Postle, A.D. and Segal, A.W. Lipidomic profiling in Crohn's disease: Abnormalities in phosphatidylinositols, with preservation of ceramide, phosphatidylcholine and phosphatidylserine composition. Int. J. Biochem. Cell Biol., 44, 1839-1846 (2012).
  • Shaner, R.L., Allegood,J.C., Park,H., Wang,E., Kelly,S., Haynes,C.A., Sullards,M.C. and Merrill,A.H. Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J. Lipid Res., 50, 1692-1707 (2009).
  • Shroff, R., Rulisek,L., Doubsky,J. and Svatos,A. Acid-base-driven matrix-assisted mass spectrometry for targeted metabolomics. Proc. Nat. Acad. Sci. USA, 106, 10092-10096 (2009).
  • Shui, G.H., Guan,X.L., Low,C.P., Chua,G.H., Goh,J.S.Y., Yang,H.Y. and Wenk,M.R. Toward one step analysis of cellular lipidomes using liquid chromatography coupled with mass spectrometry: application to Saccharomyces cerevisiae and Schizosaccharomyces pombe lipidomics. Mol. Biosystems, 6, 1008-1017 (2010).
  • Shvartsburg, A.A., Isaac,G., Leveque,N., Smith,R.D. and Metz,T.O. Separation and classification of lipids using differential ion mobility spectrometry. J. Am. Soc. Mass Spectrom., 22, 1146-1155 (2011).
  • Simons, B., Kauhanen, D., Sylvänne, T., Tarasov, K., Duchoslav E. and Ekroos, K. Shotgun lipidomics by sequential precursor ion fragmentation on a hybrid quadrupole time-of-flight mass spectrometer. Metabolites, 2, 195-213 (2012).
  • Singh, A. and Prasad,R. Comparative lipidomics of azole sensitive and resistant clinical isolates of Candida albicans reveals unexpected diversity in molecular lipid imprints. PLOS One, 6, e19266 (2011).
  • Smilowitz, J.T., Zivkovic, A.M., Wan, Y.J.Y., Watkins, S.M., Nording, M.L., Hammock, B.D. and German, J.B. Nutritional lipidomics: Molecular metabolism, analytics, and diagnostics. Mol. Nutr. Food Res., 57, 1319-1335 (2013).
  • Sokol, E., Almeida, R., Hannibal-Bach, H.K., Kotowska, D., Vogt, J., Baumgart, J., Kristiansen, K., Nitsch, R., Knudsen, J. and Ejsing, C.S. Profiling of lipid species by normal-phase liquid chromatography, nanoelectrospray ionization, and ion trap-orbitrap mass spectrometry. Anal. Biochem., 443, 88-96 (2013).
  • Song, H., Hsu,F.-F., Ladenson,J. and Turk,J. Algorithm for processing raw mass spectrometric data to identify and quantitate complex lipid molecular species in mixtures by data-dependent scanning and fragment ion database searching. J. Am. Soc. Mass Spectrom., 18, 1848-1858 (2007).
  • Song, H.W., Ladenson,J. and Turk,J. Algorithms for automatic processing of data from mass spectrometric analyses of lipids. J. Chromatogr. B, 877, 2847-2854 (2009).
  • Song, X.Z., Lasanajak,Y., Xia,B.Y., Heimburg-Molinaro,J., Rhea,J.M., Ju,H., Zhao,C.M., Molinaro,R.J., Cummings,R.D. and Smith,D.F. Shotgun glycomics: a microarray strategy for functional glycomics. Nature Methods, 8, 85-90 (2011).
  • Souady, J., Soltwisch,J., Dreisewerd,K., Haier,J., Peter-Katalinic,J. and Muthing,J. Structural profiling of individual glycosphingolipids in a single thin-layer chromatogram by multiple sequential immunodetection matched with direct IR-MALDI-o-TOF mass spectrometry. Anal. Chem., 81, 9481-9492 (2009).
  • Stahlman, M., Ejsing,C.S., Tarasov,K., Perman,J., Boren,J. and Ekroos,K. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. J. Chromatogr. B, 877, 2664-2672 (2009).
  • Stegemann, C., Drozdov,I., Shalhoub,J., Humphries,J., Ladroue,C., Didangelos,A., Baumert,M., Allen,M., Davies,A.H., Monaco,C., Smith,A., Xu,Q.B. and Mayr,M. Comparative lipidomics profiling of human atherosclerotic plaques. Circ. Cardiovasc. Genet., 4, 232-242 (2011).
  • Stubiger, G., Pittenauer,E. and Allmaier,G. MALDI seamless postsource decay fragment ion analysis of sodiated and lithiated phospholipids. Anal. Chem., 80, 1664-1678 (2008).
  • Stuebiger, G. and Belgacem,O. Analysis of lipids using 2,4,6-trihydroxyacetophenone as a matrix for MALDI mass spectrometry. Anal. Chem., 79, 3206-3213 (2007).
  • Su, X., Han,X., Mancuso,D.J., Abendschein,D.R. and Gross,R.W. Accumulation of long-chain acylcarnitine and 3-hydroxy acylcarnitine molecular species in diabetic myocardium: Identification of alterations in mitochondrial fatty acid processing in diabetic myocardium by shotgun lipidomics. Biochemistry, 44, 5234-5245 (2005).
  • Subramaniam, S., Fahy,E., Gupta,S., Sud,M., Byrnes,R.W. Cotter,D., Dinasarapu,A.R. and Maurya,M.R. Bioinformatics and systems biology of the lipidome. Chem. Rev., 111, 6452–6490 (2011).
  • Sullards, M.C., Allegood,J.C., Kelly,S., Wang,E., Haynes,C.A., Park,H., Chen,Y. and Merrill,A.H. Structure-specific, quantitative methods for analysis of sphingolipids by liquid chromatography-tandem mass spectrometry: 'inside-out' sphingolipidomics. Methods Enzymol., 432, 83-115 (2007).
  • Sullards, M.C., Wang,E., Peng,Q. and Merrill,A.H. Metabolomic profiling of sphingolipids in human glioma cell lines by liquid chromatography tandem mass spectrometry. Cell. Mol. Biol., 49, 789-797 (2003).
  • Sun, G., Yang,K., Zhao,Z., Guan,S., Han,X. and Gross,R.W. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis of cellular glycerophospholipids enabled by multiplexed solvent dependent analyte-matrix interactions. Anal. Chem., 80, 7576-7585 (2008).
  • Surviladze, Z., Harrison,K.A., Murphy,R.C. and Wilson,B.S. Fc epsilon RI and Thy-1 domains have unique protein and lipid compositions. J. Lipid Res., 48, 1325-1335 (2007).
  • Taguchi, R. and Ishikawa,M. Precise and global identification of phospholipid molecular species by an Orbitrap mass spectrometer and automated search engine Lipid Search J. Chromatogr. A, 1217, 4229-4239 (2010).
  • Tajima, Y., Ishikawa, M., Maekawa, K., Murayama, M., Senoo, Y., Nishimaki-Mogami, T., Nakanishi, H., Ikeda, K., Arita, M., Taguchi, R., Okuno, A., Mikawa, R., Niida, S., Takikawa, O. and Saito, Y. Lipidomic analysis of brain tissues and plasma in a mouse model expressing mutated human amyloid precursor protein/tau for Alzheimer's disease. Lipids Health Disease, 12, 68 (2013).
  • Tan, B., Yu,Y.W., Monn,M.F., Hughes,H.V., O'Dell,D.K. and Walker,J.M. Targeted lipidomics approach for endogenous N-acyl amino acids in rat brain tissue. J. Chromatogr. B, 877, 2890-2894 (2009).
  • Trimpin, S., Tan,B., Bohrer,B.C., O'Dell,D.K., Merenbloom,S.I., Pazos,M.X., Clemmer,D.E. and Walker,J.M. Profiling of phospholipids and related lipid structures using multidimensional ion mobility spectrometry-mass spectrometry. Int. J. Mass Spectrom., 287, 58-69 (2009).
  • Tyurin, V.A., Tyurina,Y.Y., Kochanek,P.M., Hamilton,R., DeKosky,S.T., Greenberger,J.S., Bayir,H. and Kagan,V.E. Oxidative lipidomics of programmed cell death. Methods Enzymol., 442, 375-393 (2008).
  • Tyurina, Y.Y., Tyurin,V.A., Epperly,M.W., Greenberger,J.S. and Kagan,V.E . Oxidative lipidomics of gamma-irradiation-induced intestinal injury. Free Rad. Biol. Med., 44, 299-314 (2008).
  • Valsecchi, M., Aureli,M., Mauri,L., Illuzzi, G., Chigorno,V., Prinetti,A. and Sonnino,S. Sphingolipidomics of A2780 human ovarian carcinoma cells treated with synthetic retinoids. J. Lipid Res., 51, 1832-1840 (2010).
  • van Meer, G. Cellular lipidomics. EMBO J., 24, 3159-3165 (2005).
  • van Smeden, J., Boiten, W.A., Hankemeier, T., Rissmann, R., Bouwstra, J.A. and Vreeken, R.J. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim. Biophys. Acta, 1841, 70-79 (2014).
  • Veloso, A., Astigarraga,E., Barreda-Gomez,G., Manuel,I., Ferrer,I., Giralt,MT., Ochoa,B., Fresnedo,O., Rodriguez-Puertas,R. and Fernandez,J.A. Anatomical distribution of lipids in human brain cortex by imaging mass spectrometry. J. Am. Soc. Mass Spectrom., 22, 329-338 (2011).
  • Veloso, A., Fernandez,R., Astigarraga,E., Barreda-Gomez,G., Manuel,I., Giralt,M.T., Ferrer,I., Ochoa,B., Rodriguez-Puertas,R. and Fernandez,J.A. Distribution of lipids in human brain. Anal. Bioanal. Chem., 401, 89-101 (2011).
  • Vu, H.S., Tamura, P., Galeva, N.A., Chaturvedi, R., Roth, M.R., Williams, T.D., Wang, X.M., Shah, J. and Welti, R. Direct infusion mass spectrometry of oxylipin-containing arabidopsis membrane lipids reveals varied patterns in different stress responses. Plant Physiol., 158, 324-339 (2012).
  • Vukelic, E., Zamfir,A.D., Bindila,L., Froesch,M., Peter-Katalinic,J., Usuki,S. and Yu,R.K. Screening and sequencing of complex sialylated and sulfated glycosphingolipid mixtures by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. J. Am. Soc. Mass Spectrom., 16, 571-580 (2005).
  • Wang, C., Yang,J. and Nie,J.H. Plasma phospholipid metabolic profiling and biomarkers of rats following radiation exposure based on liquid chromatography-mass spectrometry technique. Biomed. Chromatogr., 23, 1079-1085 (2009).
  • Wang, H.Y.J., Post,S.N.J.J. and Woods,A.S. A minimalist approach to MALDI imaging of glycerophospholipids and sphingolipids in rat brain sections. Int. J. Mass Spectrom., 278, 143-149 (2008).
  • Wang, T., Zhong,X.L., Mei,X.R. and Zhang,Y.Q. Advances in ESI-MS/MS approach-based plant lipidomics. Prog. Biochem. Biophys., 37, 1074-1081 (2010).
  • Wang, X.M., Li,W.Q., Li,M.Y. and Welti,R. Profiling lipid changes in plant response to low temperatures. Physiologia Plantarum, 126, 90-96 (2006).
  • Watson, A.D. Lipidomics: a global approach to lipid analysis in biological systems. J. Lipid Res., 47, 2101-2111 (2006).
  • Welti, R., Mui,E., Sparks,A., Wernimont,S., Isaac,G., Kirisits,M., Roth,M., Roberts,C.W., Botte,C., Marechal,E. and McLeod,R. Lipidomic analysis of Toxoplasma gondii reveals unusual polar lipids. Biochemistry, 46, 13882-13890 (2007).
  • Welti, R., Shah,J., Li,W., Li,M., Chen,J., Burke,J.J., Fauconnier,M.-L., Chapman,K., Chye,M.-L. and Wang,X. Plant lipidomics: Discerning biological function by profiling plant complex lipids using mass spectrometry. Frontiers Biosci., 12, 2494-2506 (2007).
  • Wenk, M.R. The emerging field of lipidomics. Nature Reviews Drug Discovery, 4, 594-610 (2005).
  • Wenk, M.R. Lipidomics of host-pathogen interactions. FEBS Lett., 580, 5541-5551 (2006).
  • Wenk, M.R. Lipidomics: new tools and applications. Cell, 143, 888-895 (2010).
  • Wiest, M.M. and Watkins,S.M. Biomarker discovery using high-dimensional lipid analysis. Current Opinion Lipidology, 18, 181-186 (2007).
  • Wolf, C. and Quinn,P.J. Lipidomics: practical aspects and applications. Prog. Lipid Res., 47, 15-36 (2008).
  • Woods, A.S. and Jackson,S.N. Brain tissue lipidomics: Direct probing using matrix-assisted laser desorption/ionization mass spectrometry. AAPS J., 8, E391-E395 (2006).
  • Woods, A.S., Wang,H.-Y.J. and Jackson,S.N. A snapshot of tissue glycerolipids. Curr. Pharm. Design, 13, 3344-3356 (2007).
  • Wu, H., Southam,A.D., Hines,A. and Viant,M.R. High-throughput tissue extraction protocol for NMR and MS-based metabolomics. Anal. Biochem., 372, 204-212 (2008).
  • Wu, J.L., Chan,R., Wenk,M.R. and Hew,C.L. Lipidomic study of intracellular Singapore grouper iridovirus. Virology, 399, 248-256 (2010).
  • Yamada, T., Uchikata, T., Sakamoto, S., Yokoi, Y., Fukusaki, E. and Bamba, T. Development of a lipid profiling system using reverse-phase liquid chromatography coupled to high-resolution mass spectrometry with rapid polarity switching and an automated lipid identification software. J. Chromatogr. A, 1292, 211-218 (2013).
  • Yamada, T., Uchikata, T., Sakamoto, S., Yokoi, Y., Nishiumi, S., Yoshida, M., Fukusaki, E. and Bamba, T. Supercritical fluid chromatography/Orbitrap mass spectrometry based lipidomics platform coupled with automated lipid identification software for accurate lipid profiling. J. Chromatogr. A, 1301, 237-242 (2013).
  • Yan, X.J., Xu, J.L., Chen, J.J., Chen, D.Y., Xu, S.L., Luo, Q.J. and Wang, Y.J. Lipidomics focusing on serum polar lipids reveals species dependent stress resistance of fish under tropical storm. Metabolomics, 8, 299-309 (2012).
  • Yang, K., Cheng,H., Gross,R.W. and Han,X. Automated lipid identification and quantification by multidimensional mass spectrometry-based shotgun lipidomics. Anal. Chem., 81, 4356-4368 (2009).
  • Yang, K., Fang, X.L., Gross, R.W. and Han, X.L. A practical approach for determination of mass spectral baselines. J. Am. Soc. Mass Spectrom., 22, 2090-2099 (2011).
  • Yang, K., Zhao,Z., Gross,R.W. and Han,X. Shotgun lipidomics identifies a paired rule for the presence of isomeric ether phospholipid molecular species. PLoS ONE, 2, e1368 (2007).
  • Yang, K., Zhao,Z.D., Gross,R.W. and Han,X. Systematic analysis of choline-containing phospholipids using multi-dimensional mass spectrometry-based shotgun lipidomics. J. Chromatogr. B, 877, 2924-2936 (2009).
  • Yang, S. Lu,S.H. and Yuan,Y.J. Lipidomic analysis reveals differential defense responses of Taxus cuspidata cells to two elicitors, methyl jasmonate and cerium (Ce4+). Biochim. Biophys. Acta, 1781, 123-134 (2008).
  • Yang, S., Qiao,B., Lu,S.-H. and Yuan,Y.-J. Comparative lipidomics analysis of cellular development and apoptosis in two Taxus cell lines. Biochim. Biophys. Acta, 1771, 600-612 (2007).
  • Yetukuri, L., Katajamaa,M., Medina-Gomez,G., Seppanen-Laakso,T., Vidal-Puig,A. and Oresic,M. Bioinformatics strategies for lipidomics analysis: characterization of obesity related hepatic steatosis. BMC Syst. Biol., 1, 12 (2007).
  • Yichoy, M., Nakayasu,E.S., Shpak,M., Aguilar,C., Aley,S.B., Almeida,I.C. and Das,S. Lipidomic analysis reveals that phosphatidylglycerol and phosphatidylethanolamine are newly generated phospholipids in an early-divergent protozoan, Giardia lamblia. Mol. Biochem. Parasitol., 165, 67-78 (2009).
  • Zarei, M., Kirsch,S., Muthing,J., Bindila,L. and Peter-Katalinic,J. Automated normal phase nano high performance liquid chromatography/matrix assisted laser desorption/ionization mass spectrometry for analysis of neutral and acidic glycosphingolipids. Anal. Bioanal. Chem., 391, 289-297 (2008).
  • Zarei, M., Muthing,J., Peter-Katalinic,J. and Bindila,L. Separation and identification of GM1b pathway Neu5Ac-and Neu5Gc gangliosides by on-line nanoHPLC-QToF MS and tandem MS: toward glycolipidomics screening of animal cell lines. Glycobiology, 20, 118-126 (2010).
  • Zehethofer, N. and Pinto,D.M. Recent developments in tandem mass spectrometry for lipidomic analysis. Anal. Chim. Acta, 627, 62-70 (2008).
  • Zhang, H.Y., Chen,X., Hu,P., Liang,Q.L., Liang,X.P., Wang,Y.M. and Luo,G.A. Metabolomic profiling of rat serum associated with isoproterenol-induced myocardial infarction using ultra-performance liquid chromatography/time-of-flight mass spectrometry and multivariate analysis. Talanta, 79, 254-259 (2009).
  • Zhang, J.I., Talaty,N., Costa,A.B., Xia,Y., Tao,W.A., Bell,R., Callahan,J.H. and Cooks,R.G. Rapid direct lipid profiling of bacteria using desorption electrospray ionization mass spectrometry. Int. J. Mass Spectrom., 301, 37-44 (2011).
  • Zheng, LA., T'Kind,R., Decuypere,S., von Freyend,S.J., Coombs,G.H. and Watson,D.G. Profiling of lipids in Leishmania donovani using hydrophilic interaction chromatography in combination with Fourier transform mass spectrometry. Rapid Commun. Mass Spectrom., 24, 2074-2082 (2010).
  • Zheng, W., Kollmeyer,J., Symolon,H., Momin,A., Munter,E., Wang,E., Kelly,S., Allegood,J.C., Liu,Y., Peng,Q., Ramaraju,H., Sullards,M.C., Cabot,M. and Merrill,A.H. Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim. Biophys. Acta, 1758, 1864-1884 (2006).
  • Zhou, X.C., Mao, J.H., Ai, J.M., Deng, Y.P., Roth, M.R., Pound, C., Henegar, J., Welti, R. and Bigler, S.A. Identification of plasma lipid biomarkers for prostate cancer by lipidomics and bioinformatics. PLOS One, 7, e48889 (2012).
  • Zhou, Z., Marepally,S.R., Nune,D.S., Pallakollu,P., Ragan,G., Roth,M.R., Wang,L., Lushington,G.H., Visvanathan,M. and Welti,R. LipidomeDB data calculation environment: online processing of direct-infusion mass spectral data for lipid profiles. Lipids, 46, 879-884 (2011).

Updated: February 5th, 2014