Literature survey -

HPLC Separation of Molecular Species of Phospholipids

HPLC in the reversed-phase mode has largely supplanted TLC methods for the separation of molecular species of phospholipids. It is possible to separate intact phospholipids by this means, or many analysts favour converting phospholipids to diacylglycerols and thence to UV-absorbing derivatives prior to separation. I recommend the following review article especially.

Bell,M.V. Separations of molecular species of phospholipids by high-performance liquid chromatography. in Advances in Lipid Methodology - Four, pp. 45-82 (edited by W.W. Christie, Oily Press, Dundee) (1997).

The following references were collected as part of our regular literature reviews for our own research purposes. We cannot claim to have covered the subject exhaustively, but we have done our best. References are listed alphabetically by the first author of a paper, but not necessarily chronologically by that author. They cover the years 1990 to the present. You may also wish to consult our literature survey of gas chromatographic methods for analysis of molecular species of phospholipids (Gas chromatography of diacylglycerol derivatives (derived from phospholipids)). Please note that only those references where chromatography (as opposed to mass spectrometry) is especially important are listed here.

  • Abidi,S.L. Separation procedures for phosphatidylserines. J. Chromatogr. B, 717, 279-293 (1998).
  • Abidi,S.L. HPLC of phosphatidic acids and related polar lipids. J. Chromatogr. A, 587, 193-203 (1991).
  • Abidi,S.L. and Mounts,T.L. HPLC separation of molecular species of neutral phospholipids. J. Chromatogr. A, 598, 209-218 (1992).
  • Abidi,S.L. and Mounts,T.L. Reversed-phase separations of nitrogenous phospholipids on an octadecanoyl poly(vinyl alcohol) phase. J. Chromatogr. A, 773, 93-101 (1997).
  • Abidi,S.L. and Mounts,T.L. Separation of molecular species of phosphatidylserine by reversed-phase ion-pair HPLC. J. Liqu. Chromatogr., 15, 2487-2502 (1992).
  • Abidi,S.L. and Mounts,T.L. Reversed-phase high-performance liquid chromatography of molecular species of phospholipid derivatives. J. Chromatogr. A, 741, 213-222 (1996).
  • Abidi,S.L. and Mounts,T.L. Separations of molecular species of phosphatidic acid by high-performance liquid chromatography. J. Chromatogr. A, 694, 365-373 (1995).
  • Abidi,S.L. and Mounts,T.L. Reversed-phase separations of subcomponents of minor soybean phospholipids, glycerol esters of phosphatidic acids. J. Chromatogr. Sci., 31, 231-236 (1993).
  • Abidi,S.L. and Mounts,T.L. Reversed-phase retention behaviour of fluorescence-labelled phospholipids in ammonium acetate buffers. J. Liqu. Chromatogr., 17, 105-122 (1994).
  • Abidi,S.L. and Mounts,T.L. High-performance liquid chromatography of phosphatidic acid. J. Chromatogr. B, 671, 281-297 (1995).
  • Abidi,S.L., Mounts,T.L. and Rennick,K.A. Reversed-phase ion-pair HPLC of phosphatidylinositols. J. Liqu. Chromatogr., 14, 573-588 (1991).
  • Abidi,S.L., Mounts,T.L. and Rennick,K.A. Reversed-phase HPLC of phospholipids with fluorescence detection. J. Chromatogr. A, 639, 175-184 (1993).
  • Adlof,R.O. Fractionation of egg and soybean phosphatidylcholines by silver resin chromatography. J. Chromatogr. A, 538, 469-473 (1991).
  • Akasaka,K., Ohata,A., Ohrui,H. and Meguro,H. Automatic determination of hydroperoxides of phosphatidylcholine and phosphatidylethanolamine in human plasma. J. Chromatogr. B, 665, 37-43 (1995).
  • Albert,C.J., Anbukumar,D.S., Messner,M.C. and Ford,D.A. Chromatographic methods for the analyses of 2-halofatty aldehydes and. chlorohydrin molecular species of lysophosphatidylcholine. J. Chromatogr. B, 877, 2768-2777 (2009).
  • Alvarez,J.G., Slomovic,B. and Ludmir,J. Analysis of dipalmitoyl phosphatidylcholine in amniotic fluid by high-performance liquid chromatography. J. Chromatogr. B, 690, 338-342 (1997).
  • Amari,J.V., Brown,P.R., Pivarnik,P.E., Sehgal,R.K. and Turcotte,J.G. Isolation of experimental anti-AIDS glycerophospholipids by micro-preparative reversed-phase HPLC. J. Chromatogr. A, 590, 153-161 (1992).
  • Astarita,G., Ahmed,F. and Piomelli,D. Identification of biosynthetic precursors for the endocannabinoid anandamide in the rat brain. J. Lipid Res., 49, 48-57 (2008).
  • Baker,D.L., Desiderio,D.M., Miller,D.D., Tolley,B. and Tigyi,G.J. Direct quantitative analysis of lysophosphatidic acid molecular species by stable isotope dilution electrospray ionization liquid chromatography-mass spectrometry. Anal. Biochem., 292, 287-295 (2001).
  • Bakken,A.M., Staeffler,A., Jorgensen,H.A. and Holmsen,H. Glycerophospholipid molecular species in platelets and brain tissues - are platelets a good model for neurons? Platelets, 17, 484-492 (2006).
  • Bang,D.Y., Ahn,E.J. and Moon,M.H. Shotgun analysis of phospholipids from mouse liver and brain by nanoflow liquid chromatography/tandem mass spectrometry. J. Chromatogr. B, 852, 268-277 (2007).
  • Bang,D.Y., Kang,D.J. and Moon,M.H. Nanoflow liquid chromatography-tandem mass spectrometry for the characterization of intact phosphatidylcholines from soybean, bovine brain, and liver. J. Chromatogr. A, 1104, 222-229 (2006).
  • Bao,Y.P., Hurst,R. and Williamson,G. High performance liquid chromatographic separation of hydroperoxy-phospholipids and their corresponding hydroxy-phospholipid derivatives. J. Liqu. Chromatogr. Rel. Technol., 21, 2061-2068 (1998).
  • Bathena,S.P., Huang,J., Nunn,M.E., Miyamoto,T., Parrish,L.C., Lang,M.S., McVaney,T.P., Toews,M.L., Cerutis,D.R. and Alnouti,Y. Quantitative determination of lysophosphatidic acids (LPAs) in human saliva and gingival crevicular fluid (GCF) by LC-MS/MS. J. Pharm. Biomed. Anal., 56, 402-407 (2011).
  • Bell, M.V. Separations of molecular species of phospholipids by high-performance liquid chromatography. In: Advances in Lipid Methodology - Four, pp. 45-82 (edited by W.W. Christie, Oily Press, Dundee) (1997).
  • Bell, M.V. and Dick,J.R. Molecular species composition of phosphatidylinositol from the brain, retina, liver and muscle of cod (Gadus morhua). Lipids, 25, 691-694 (1990).
  • Bell, M.V. and Dick,J.R. Molecular species composition of the major diacyl glycerophospholipids from muscle, liver, retina and brain of cod (Gadus morhua). Lipids, 26, 565-573 (1991).
  • Bell, M.V. and Dick,J.R. 1-O-Alkyl-1'-enyl-2-acyl-glycerophosphoethanolamine content and molecular species composition of fish. Lipids, 28, 19-22 (1993).
  • Bell, M.V., Dick,J.R. and Buda,Cs. Molecular speciation of fish sperm phospholipids: large amounts of dipolyunsaturated phosphatidylserine. Lipids, 32, 1085-1091 (1997).
  • Bergqvist,M. and Kuksis,A. Liquid chromatography with on-line electrospray mass spectrometry of oxidized diphosphatidylglycerol. In: 'New Techniques and Applications in Lipid Analysis', pp. 81-99 (edited by R.E. McDonald and M.M. Mossoba, AOCS Press, Champaign) (1997).
  • Bernstrom,K., Kayganich,K. and Murphy,R.C. Collisionally induced dissociation of epoxyeicosatrienoic acids and epoxyeicosatrienoic acid-phospholipid molecular species. Anal. Biochem., 198, 203-211 (1991).
  • Bernstrom,K., Kayganich,K., Murphy,R.C. and Fitzpatrick,F.A. Incorporation and distribution of epoxyeicosatrienoic acids into cellular phospholipids. J. Biol. Chem., 267, 3686-3690 (1992).
  • Blaas, N., Schuurmann,C., Bartke,N., Stahl,B. and Humpf,H.U. Structural profiling and quantification of sphingomyelin in human breast milk by HPLC-MS/MS. J. Agric. Food Chem., 59, 6018-6024 (2011).
  • Blank, M.L., Cress,E.A., Fitzgerald,V. and Snyder,F. TLC and HPLC separation of glycerolipid subclasses as benzoates. Derivatives of ether and ester analogues of phosphatidylcholine, phosphatidylethanolamine and platelet activating factor. J. Chromatogr. A, 508, 382-385 (1990).
  • Bleijerveld, O.B., Brouwers,J.F.H.M., Vaandrager,A.B., Helms,J.B. and Houweling,M. The CDP-ethanolamine pathway and phosphatidylserine decarboxylation generate different phosphatidylethanolamine molecular species. J. Biol. Chem., 282, 28362-28372 (2007).
  • Bollinger, J.G., Ii,,H., Sadilek,M. and Gelb,M.H. Improved method for the quantification of lysophospholipids including enol ether species by liquid chromatography-tandem mass spectrometry. J. Lipid Res., 51, 440-447 (2010).
  • Bonanno, L.M., Denizot,B.A., Tchoreloff,P.C., Puisieux,F. and Cardot,P.J. Determination of phospholipids from pulmonary surfactant using an on-line coupled silica/reversed-phase HPLC system. Anal. Chem., 64, 371-379 (1992).
  • Booker, M.L., LaMorte,W.W., Ahrendt,S.A., Lillemoe,K.D. and Pitt,H.A. Distribution of phosphatidylcholine molecular species between mixed micelles and phospholipid-cholesterol vesicles in human gallbladder bile: dependence on acyl chain length and unsaturation. J. Lipid Res., 33, 1485-1492 (1992).
  • Boumann, H.A., Hopmans,E.C., van de Leemput,I., Op den Camp,H.J.M., van de Vossenberg,J., Strous,M., Jetten,M.S.M., Damste,J.S.S. and Schouten,S. Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups. FEMS Microbiol. Letts, 258, 297-304 (2006).
  • Bowron, A., Frost, R., Powers, V.E.C., Thomas, P.H., Heales, S.J.R. and Steward, C.G. Diagnosis of Barth syndrome using a novel LC-MS/MS method for leukocyte cardiolipin analysis. J. Inher. Metab. Dis., 36, 741-746 (2013).
  • Bradley,A.S., Fredricks,H., Hinrichs,K.-U. and Summons,R.E. Structural diversity of diether lipids in carbonate chimneys at the Lost City Hydrothermal Field. Org. Geochem., 40, 1169-1178 (2009).
  • Bringezu, F., Dobner,B., Stritzel,R., Elsner,B. and Nuhn,P. Preparative separation of the diastereomers of methyl branched-chain phosphatidylcholines. J. Chromatogr. A, 724, 367-372 (1996).
  • Brouwers, J.F. Liquid chromatographic-mass spectrometric analysis of phospholipids. Chromatography, ionization and quantification. Biochim. Biophys. Acta, 1811, 763-775 (2011)
  • Brouwers, J.F.H.M., Gadella,B.M., van Golde,L.M.G. and Tielens,A.G.M. Quantitative analysis of phosphatidylcholine molecular species using HPLC and light scattering detection. J. Lipid Res., 39, 344-353 (1998).
  • Brouwers, J.F.H.M., Vernooij,E.A.A.M., Tielens,A.G.M. and van Golde,L.M.G. Rapid separation and identification of phosphatidylethanolamine molecular species. J. Lipid Res., 40, 164-169 (1999).
  • Burdge, G.C. and Postle,A.D. Phospholipid molecular species composition of developing fetal guinea pig brain. Lipids, 30, 719-724 (1995).
  • Burdge ,G.C. and Postle,A.D. Hepatic phospholipid molecular species in the guniea pig. Adaptations to pregnancy. Lipids, 29, 259-264 (1994).
  • Burdge, G.C., Creaney,A., Postle,A.D., Wilton,D.C. Mammalian secreted and cytosolic phospholipase A(2) show different specificities for phospholipid molecular species. Int. J. Biochem. Cell Biol., 27, 1027-1032 (1995).
  • Burdge, G.C., Kelly,F.J. and Postle,A.D. Mechanisms of hepatic phosphatidylcholine synthesis in the developing guinea pig: contributions of acyl remodelling and of N-methylation of phosphatidylethanolamine. Biochem. J., 290, 67-73 (1993).
  • Bure, C., Ayciriex, S., Testet, E. and Schmitter, J.M. A single run LC-MS/MS method for phospholipidomics. Anal. Bioanal. Chem.,405, 203-213 (2013).
  • Burgos, A., Szymanski,J., Seiwert,B., Degenkolbe,T., Hannah,M.A., Giavalisco,P. and Willmitzer,L. Analysis of short-term changes in the Arabidopsis thaliana glycerolipidome in response to temperature and light. Plant J., 66, 656-668 (2011).
  • Burnum, K.E., Cornett,D.S., Puolitaival,S.M., Milne,S.B., Myers,D.S., Tranguch,S., Brown,H.A., Dey,S.K. and Caprioli,R.M. Spatial and temporal alterations of phospholipids determined by mass spectrometry during mouse embryo implantation. J. Lipid Res., 50, 2290-2298 (2009).
  • Butikofer, P., Kuypers,F.A., Shackleton,C., Brodbeck,U. and Stieger,S. Molecular species analysis of the glycosylphosphatidylinositol anchor of Torpedo marmorata acetylcholinesterase. J. Biol. Chem., 265, 18983-18987 (1990).
  • Butikofer, P., Zollinger,M. and Brodbeck,U. Alkylacyl glycerophosphoinositol in human and bovine erythrocytes. Molecular species composition and comparison with glycosyl-inositolphospholipid anchors of erythrocyte acetylcholinesterases. Eur. J. Biochem., 208, 677-683 (1992).
  • Butovich,I.A., Uchiyama,E., Di Pascuale,M.A. and McCulley,J.P. Liquid chromatography-mass spectrometric analysis of lipids present in human meibomian gland secretions. Lipids, 42, 765-776 (2007).
  • Byrdwell,W.C. Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids. Lipids, 36, 327-346 (2001).
  • Byrdwell,W.C. Dual parallel mass spectrometers for analysis of sphingolipid, glycerophospholipid and plasmalogen molecular species. Rapid Commun. Mass Spectrom., 12, 256-272 (1998).
  • Byrdwell,W.C. and Borchman,D. Liquid chromatography-mass spectrometric characterization of sphingomyelin and dihydrosphingomyelin of human lens membranes. Ophthalmic Res., 29, 191-206 (1997).
  • Byrdwell,W.C. and Perry,R.H. Liquid chromatography with dual parallel mass spectrometry and P-31 nuclear magnetic resonance spectroscopy for analysis of sphingomyelin and dihydrosphingomyelin - II. Bovine milk sphingolipids. J. Chromatogr. A, 1146, 164-185 (2007).
  • Cagniant,D. Argentation chromatography - applications to the determination of olefins, lipids, and heteroatomic compounds. In: 'Complexation Chromatography', pp. 149-195 (edited by D. Cagniant, Marcel Dekker, New York) (1992).
  • Cantafora,A. and Masella,R. Improved determination of individual molecular species of phosphatidylcholine in biological samples by HPLC with internal standards. J. Chromatogr. A, 593, 139-146 (1992).
  • Cantafora,A., Cardelli,M. and Masella,R. Separation and determination of molecular species of phosphatidylcholines in biological samples by HPLC. J. Chromatogr. A, 507, 339-349 (1990).
  • Careri, M., Dieci,M., Mangia,A., Manini,P. and Raffaelli,A. Liquid chromatography-mass spectrometry of phospholipids in soybean products using particle-beam and ionspray interfaces. Rapid Commun. Mass Spectrom., 10, 707-714 (1996).
  • Carrier, A., Parent,J. and Dupuis,S. Quantitation and characterization of phospholipids in pharmaceutical formulations by liquid chromatography-mass spectrometry. J. Chromatogr. A, 876, 97-109 (2000).
  • Chen, D.Y., Yan, X.J., Xu, J.L., Su, X.L. and Li, L.J. Lipidomic profiling and discovery of lipid biomarkers in Stephanodiscus sp under cold stress. Metabolomics, 9, 949-959 (2013).
  • Chen, S. Partial characterization of the molecular species of phosphatidylserine from human plasma by high-performance liquid chromatography and fast-atom-bombardment mass-spectrometry. J. Chromatogr. B, 661, 1-5 (1994).
  • Chen, S. and Claeys,M. Characterization of omega-3-docosahexaenoic acid-containing molecular species of phospholipids in rainbow trout liver. J. Agric. Food Chem., 44, 3120-3125 (1996).
  • Chen, S. and Li,K.W. Negative-ion liquid secondary-ion mass spectrometry and tandem-mass spectrometric analysis of the molecular-species of aminophospholipids as 9-fluorenylmethyloxycarbonyl derivatives. Anal. Chim. Acta, 326, 127-140 (1996).
  • Chen, S. and Li,K.W. Mass spectrometric identification of molecular species of phosphatidylcholine and lysophosphatidycholine extracted from shark liver. J. Agric. Food Chem., 55, 9670-9677 (2007).
  • Chen, S. and Li,K.W. Comparison of molecular species of various transphosphatidylated phosphatidylserine (PS) with bovine cortex PS by mass spectrometry. Chem. Phys. Lipids, 152, 46-56 (2008).
  • Chen, S., Carvey,P.M. and Li,K.W. Characterization of the molecular species of phosphatidylethanolamine from kidney of the fresh water snail Lymneae stagnalis by mass spectrometry. Rapid Commun. Mass Spectrom., 13, 2416-2423 (1999).
  • Chen, S., Curcuruto,O., Catinella,S., Traldi,P. and Menon,G. Characterization of the molecular species of glycerophospholipids from rabbit kidney: an alternative approach to the determination of fatty acyl chain position by negative ion fast atom bombarment combined with mass-analysed ion kinetic energy analysis. Biol. Mass Spectrom., 21, 655-666 (1992).
  • Chen, S., Kirschner,G. and Traldi,P. Positive FAB-MS analysis of the molecular species of glycerophosphatidylserine. Anal. Biochem., 191, 100-105 (1990).
  • Chen ,S., Menon,G. and Traldi,P. Identification of aminophospholipid stereomers by positive-ion fast atom bombardment combined with collisional activation mass-analyzed ion kinetic energy analysis and HPLC. Org. Mass Spectrom., 27, 215-218 (1992).
  • Chicha,A., Demandre,C., Justin,A.M. and Mazliak,P. The molecular species of phosphatidylinositol and phosphatidylinositolphosphate present in the coleoptiles and the first leaves of maize (Zea mays L). Comptes Rend. Acad. Sci. III., 317, 419-423 (1994).
  • Chilton, F.H. Separation and characterization of arachidonate-containing phospholipids. Methods Enzymol., 187, 157-167 (1990).
  • Chilton, F.H. Assays for measuring arachidonic acid release from phospholipids. Methods Enzymol., 197, 166-182 (1991).
  • Christie ,W.W. Detectors for high-performance liquid chromatography of lipids with special reference to evaporative light-scattering detection. In: 'Advances in Lipid Methodology - One' (edited by W.W. Christie, Oily Press, Ayr), pp. 239-271 (1992).
  • Christie, W.W. and Han, X. Lipid Analysis - Isolation, Separation, Identification and Lipidomic Analysis (4th edition), 446 pages (Oily Press, Bridgwater, U.K. and Woodhead Publishing Ltd, Cambridge, U.K.) (2010) - Woodhead Publishing Ltd.
  • Connor, W.E., Lin,D.S., Thomas,G., Ey,F., De Loughery,T. and Zhu,N. Abnormal phospholipid molecular species of erythrocytes in sickle cell anemia. J. Lipid Res., 38, 2516-2528 (1997).
  • Cronholm,T., Viestam-Rains,M. and Sjovall,J. Decreased content of arachidonoyl species of phosphatidylinositol phosphates in pancreas of rats fed on an ethanol-containing diet. Biochem. J., 287, 925-928 (1992).
  • Cserhati,C. and Szogyi,M. Anomalous retention behaviour of some synthetic phospholipids in reversed phase chromatography J. High Resolut. Chromatogr., 15, 277-278 (1992).
  • DaTorre,S.D. and Creer,M.H. Differential turnover of polyunsaturated fatty acids in plasmalogen and diacylglycerophospholipids of isolated cardiac myocytes. J. Lipid Res., 32, 1159-1172 (1991).
  • DeLong,C.J., Baker,P.R.S., Samuel,M., Cu,Z. and Thomas,M.J. Molecular species composition of rat liver phospholipids by ESI-MS/MS: the effect of chromatography. J. Lipid Res., 42, 1959-1968 (2001).
  • Dethloff,L.A. and Hook,G.E.R. Phospholipids from pulmonary surfactants. In: 'CRC Handbook of Chromatography. Analysis of Lipids'. (ed. K.D. Mukherjee & N. Weber, CRC Press, Boca Raton), pp. 471-485 (1993).
  • DiPierro,D., Tavazzi,B., Lazzarino,G., Galvano,M., Bartolini,M. and Giardina,B. Separation of representative lipid compounds of biological membranes and lipid derivatives from peroxidized polyunsaturated fatty acids by reversed phase high-performance liquid chromatography. Free Rad. Res., 26, 307-317 (1997).
  • Dobson, G. and Deighton,N. Analysis of phospholipid molecular species by liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry of diacylglycerol nicotinates. Chem. Phys. Lipids, 111, 1-17 (2001).
  • Dobson, G., Itabashi,Y., Christie,W.W. and Robertson,G.W. Liquid chromatography with particle-beam electron-impact mass spectrometry of diacylglycerol nicotinates. Chem. Phys. Lipids, 97, 27-39 (1998).
  • Dragani, L.K., Berrie,C.P., Corda,D. and Rotilio,D. Analysis of glycerophosphoinositol by liquid chromatography-electrospray ionisation tandem mass spectrometry using a beta-cyclodextrin-bonded column. J. Chromatogr. B, 802, 283-289 (2004).
  • Dugo, P., Fawzy, N., Cichello, F., Cacciola, F., Donato, P. and Mondello, L. Stop-flow comprehensive two-dimensional liquid chromatography combined with mass spectrometric detection for phospholipid analysis. J. Chromatogr. A, 1278, 46-53 (2013).
  • Eckard, P.R., Taylor,L.T. and Slack,G.C. Method development for the separation of phospholipids by subcritical fluid chromatography. J. Chromatogr. A, 826, 241-247 (1998).
  • Evershed, R.P. Application of modern mass spectrometric techniques to the analysis of lipids. In: 'Developments in the Analysis of Lipids', pp. 123-160 (edited by J.H.P. Tyman and M.H. Gordon, Royal Soc. Chem., Cambridge). (1994).
  • Fang, J.S. and Barcelona,M.J. Structural determination and quantitative analysis of bacterial phospholipids using liquid chromatography electrospray ionization mass spectrometry. J. Microb. Methods, 33, 23-35 (1998).
  • Felouati, B.-E., Pageaux,J.-F., Fayard,J.-M., Lagarde,M. and Laugier,C. Estradiol-induced changes in the composition of phospholipid classes of quail oviduct - specific replacement of arachidonic acid by docosahexaenoic acid in alkenylacyl-glycerophosphoethanolamine. Biochem. J., 301, 361-366 (1994).
  • Fernandis, A.Z. and Wenk,M.R. Lipid-based biomarkers for cancer. J. Chromatogr. B, 877, 2830-2835 (2009).
  • Fitzgerald, V., Blank,M.L. and Snyder,F. Molecular species of sphingomyelin in sphingomyelinase-sensitive and sphingomyelinase-resistant pools of HL-60 cells. Lipids, 30, 805-809 (1995).
  • Fong, B., Ma, L. and Norris, C. Analysis of phospholipids in infant formulas using high performance liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem., 61, 858-865 (2013).
  • Ford, D.A. and Gross,D.W. The discordant rates of sn-1 aliphatic chain and polar head group incorporation into plasmalogen molecular species demonstrate the fundamental importance of polar head group remodeling in plasmalogen biosynthesis in rabbit myocardium. Biochemistry, 33, 1216-1222 (1994).
  • Frey,B., Haupt,R., Alms,S., Holzmann,G., Konig,T., Kern,H., Kox,W., Rustow,B. and Schlame,M. Increase in fragmented phosphatidylcholine in blood plasma by oxidative stress. J. Lipid Res., 41, 1145-1153 (2000).
  • Garrett,T.A., Kordestani,R. and Raetz,C.R.H. Quantification of cardiolipin by liquid chromatography-electrospray ionization mass spectrometry. Methods Enzymol., 433, 213-230 (2007).
  • Gelsema,W.J., Choma,I., den Ouden,T.A.F., Zander,R. and van den Bosch,H. Quantitation of the diacyl, alkylacyl, and alk-1-enylacyl subclasses of choline glycerophospholipids by chemical dephosphorylation and benzoylation. Anal. Biochem., 217, 265-276 (1994).
  • Gelsema,W.J., Vandenbrink,O.F. and Vandenbosch,H. Benzoolysis of diacylglycerophosphocholines: dephosphorylation and sequential formation of isomeric reaction products. J. Lipid Res., 37, 1224-1233 (1996).
  • Glass,R.L. Semipreparative HPLC separation of phosphatidylcholine molecular species from soybean leaves. J. Liqu. Chromatogr., 14, 339-349 (1991).
  • Gross,C.S., Simms,P.J., Towne,R.W. and Miller,R.E. Quantitative determination of dipalmitoylphosphatidylcholine and palmitic acid in porcine lung surfactants used in the treatment of respiratory distress syndrome. J. Chromatogr. B, 744, 407-413 (2000).
  • Gross,S.K., Daniel,P.F., Evans,J.E. and McCluer,R.H., Lipid composition of lysosomal multilamellar bodies of male mouse urine. J. Lipid Res., 32, 157-164 (1991).
  • Guan,Z.Q., Johnston,N.C., Aygun-Sunar,S., Daldal,F., Raetz,C.R.H. and Goldfine,H. Structural characterization of the polar lipids of Clostridium novyi NT. Further evidence for a novel anaerobic biosynthetic pathway to plasmalogens. Biochim. Biophys. Acta, 1811, 186-193 (2011).
  • Gunnarsson, T., Karlsson,A., Hanson,P., Johnson,G., Alling,C. and Odham,G. Determination of phosphatidylethanol in blood from alcoholic males using high-performance liquid chromatography and evaporative light scattering or electrospray mass spectrometric detection. J. Chromatogr. B, 705, 243-249 (1998).
  • Guo, X.H. and Lankmayr,E. Multidimensional approaches in LC and MS for phospholipid bioanalysis. Bioanalysis, 2, 1109-1123 (2010).
  • Hall, L.M. and Murphy,R.C. Analysis of stable oxidized molecular species of glycerophospholipids following treatment of red blood cell ghosts with t-butylhydroperoxide. Anal. Biochem., 258, 184-194 (1998).
  • Hama, K., Nagai, T., Nishizawa, C., Ikeda, K., Morita, M., Satoh, N., Nakanishi, H., Imanaka, T., Shimozawa, N., Taguchi, R., Inoue, K. and Yokoyama, K. Molecular species of phospholipids with very long chain fatty acids in skin fibroblasts of Zellweger syndrome. Lipids, 48, 1253-1267 (2013).
  • Han, X., Abendschein,D.R., Kelley,J.G. and Gross,R.W. Diabetes-induced changes in specific lipid molecular species in rat myocardium. Biochem. J., 352, 79-89 (2000).
  • Han, X., Gubitosiklug,R.A., Collins,B.J. and Gross,R.W. Alterations in individual molecular species of human platelet phospholipids during thrombin stimulation: electrospray-ionization mass spectrometry-facilitated identification of the boundary conditions for the magnitude and selectivity of thrombin-induced platelet phospholipid hydrolysis. Biochemistry, 35, 5822-5832 (1996).
  • Han, X., Holtzman,D.M. and McKeel,D.W. Plasmalogen deficiency in early Alzheimer's disease subjects and in animal models: molecular characterization using electrospray ionization mass spectrometry. J. Neurochem., 77, 1168-1180 (2001).
  • Hansen, H.H., Hansen,S.H., Bjornsdottir,I. and Hansen,H.S. Electrospray ionization mass spectrometric method for the determination of cannabinoid precursors: N-acylethanolamine phospholipids (NAPEs). J. Mass Spectrom., 34, 761-767 (1999).
  • Harrabi, S., Herchi,W., Kallel,H., Mayer,P.M. and Boukhchina,S. Liquid chromatographic-mass spectrometric analysis of glycerophospholipids in corn oil. Food Chem., 114, 712-716 (2009).
  • Hay, D.W., Cahalane,M.J., Timofeyeva,N. and Carey,M.C., Molecular species of lecithins in human gallbladder bile. J. Lipid Res., 34, 759-768 (1993).
  • Hayashi, H., Adachi,H., Kataoka,K., Sato,H. and Akino,T., Molecular species profiles of acidic phospholipids in lung fractions of adult and perinatal rabbits. Biochim. Biophys. Acta, 1042, 126-131 (1990).
  • Haynes,C.A., Allegood,J.C., Park,H. and Sullards,M.C. Sphingolipidomics: Methods for the comprehensive analysis of sphingolipids. J. Chromatogr. B, 877, 2696-2708 (2009).
  • Hazen,S.L., Hall,C.R., Ford,D.A. and Gross,R.W., Isolation of a human myocardial phospholipase-A(2) isoform: fast-atom-bombardment MS and reversed-phase HPLC identification of choline and ethanolamine glycerophospholipid substrates. J. Clin. Invest., 91, 2513-2522 (1993).
  • He,H., Emmett,M.R., Nilsson,C.L., Conrad,C.A. and Marshall,A.G. High mass accuracy and resolution facilitate identification of glycosphingolipids and phospholipids. Int. J. Mass Spectrom., 305, 116-119 (2011).
  • Hedrick,D.B., Guckert,J.B. and White,D.C., Archaebacterial ether lipid diversity analyzed by supercritical fluid chromatography: integration with a bacterial lipid protocol. J. Lipid Res., 32, 659-666 (1991).
  • Hermansson,M., Kakela,R., Berghall,M., Lehesjoki,A.E., Somerharju,P. and Lahtinen,U. Mass spectrometric analysis reveals changes in phospholipid, neutral sphingolipid and sulfatide molecular species in progressive epilepsy with mental retardation, EPMR, brain: a case study. J. Neurochem., 95, 609-617 (2005).
  • Herrero,M., Vicente,M.J., Cifuentes,A. and Ibanez,E. Characterization by high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry of the lipid fraction of Spirulina platensis pressurized ethanol extract. Rapid Commun. Mass Spectrom., 21, 1729-1738 (2007).
  • Hirashima,Y., Farooqui,A.A., Murphy,E.J. and Horrocks,L.A., Purification of plasmalogens using Rhizopus delemar lipase and naja naja phospholipase A2. Lipids, 25, 344-348 (1990).
  • Holmback,J., Karlsson,A.A. and Arnoldsson,K.C. Characterization of N-acylphosphatidylethanolamine and acylphosphatidylglycerol in oats. Lipids, 36, 153-165 (2001).
  • Hong,J.K., Cho,K., Kim,Y.H., Cheong,C., Lee,K.S. and Jung,J.H. Structural determination of lysophosphatidylcholines extracted from marine sponges by fast atom bombardment tandem mass spectrometry. Rapid Commun. Mass Spectrom., 15, 1120-1126 (2001).
  • Hradec,J., Dufek,P. and Matucha,M. Quantitation of individual molecular species of phosphatidylcholines by reversed-phase high-performance liquid chromatography with fluorometric detection. J. Chromatogr. B, 714, 145-151 (1998).
  • Hsu,F.F., Bohrer,A. and Turk,J. Formation of lithiated adducts of glycerophosphocholine lipids facilitates their identification by electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom., 9, 516-526 (1998).
  • Huang,L.S., Kang,J.S., Kim,M.R. and Sok,D.E. Oxygenation of arachidonoyl lysophospholipids by lipoxygenases from soybean, porcine leukocyte, or rabbit reticulocyte. J. Agric. Food Chem., 56, 1224-1232 (2008).
  • Hubbard,W.C., Moser,A.B., Tortorelli,S., Liu,A., Jones,D. and Moser,H. Combined liquid chromatography-Tandem mass spectrometry as an analytical method for high throughput screening for X-linked adrenoleukodystrophy and other peroxisomal disorders: Preliminary findings. Mol. Genetics Metab., 89, 185-187 (2006).
  • Hullin,F., Bossant,M.J. and Salem,N. Aminophospholipid molecular species asymmetry in the human erythrocyte plasma membrane. Biochim. Biophys. Acta, 1061, 15-25 (1991).
  • Hummel,J., Segu,S., Li,Y., Irgang,S., Jueppner,J. and Giavalisco,P. Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids. Front. Plant Sci., 2, article 54 (2011)
  • Hvattum,E., Hagelin,G. and Larsen,A. Study of mechanisms involved in the collision-induced dissociation of carboxylate anions from glycerophospholipids using negative ion electrospray tandem quadrupole mass spectrometry. Rapid Commun. Mass Spectrom., 12, 1405-1409 (1998).
  • Hvattum,E., Larsen,A., Uran,S., Michelsen,P.M. and Skotland,T. Specific detection and quantification of palmitoyl-stearoyl-phosphatidylserine in human blood using normal-phase liquid chromatography coupled with electrospray mass spectrometry. J. Chromatogr. B, 716, 47-56 (1998).
  • Hvattum,E., Rosjo,C., Gjoen,T., Rosenlund,G. and Ruyter,B. Effect of soybean oil and fish oil on individual molecular species of Atlantic salmon head kidney phospholipids determined by normal-phase liquid chromatography coupled to negative ion electrospray tandem mass spectrometry. J. Chromatogr. B, 748, 137-149 (2000).
  • Isaac,G., Bylund,D., Mansson,J.E., Markides,K.E. and Bergquist,J. Analysis of phosphatidylcholine and sphingomyelin molecular species from brain extracts using capillary liquid chromatography electrospray ionization mass spectrometry. J. Neurosci. Methods, 128, 111-119 (2003).
  • Ishinaga,M., Tanimoto,M., Sugiyama,S., Kumamoto,R. and Yokoro,K. Molecular species of phospholipids in rats in primary and transplanted fibrosarcomas induced by soybean oil containing tocopherol acetate. Biochem. Cell Biol., 69, 655-660 (1991).
  • Ishioka,S., Taoka,Y. and Itabashi,Y. Molecular species analysis of phosphatidylglycerols by reversed-phase HPLC/ESI-MS. Bunseki Kagaku, 52, 795-803 (2003).
  • Itabashi,Y., Marai,L. and Kuksis,A. Identification of natural diacylglycerols as the 3,5-dinitrophenylurethanes by chiral phase liquid chromatography with MS. Lipids, 26, 951-956 (1991).
  • Ivanova, P.T., Milne,S.B., Myers,D.S. and Brown,H.A. Lipidomics: a mass spectrometry based systems level analysis of cellular lipids. Curr. Opin. Chem. Biol., 13, 526-531 (2009).
  • Jennemann, R., Geyer,R., Sandhoff,R., Gschwind,R.M., Levery,S.B., Grone,H.J. and Wiegandt,H. Glycoinositolphosphosphingolipids (basidiolipids) of higher mushrooms. Eur. J. Biochem., 268, 1190-1205 (2001).
  • Jia, L., Wang,C., Kong,H., Cai,Z. and Xu,G. Plasma phospholipid metabolic profiling and biomarkers of mouse IgA nephropathy. Metabolomics, 2, 95-104 (2006).
  • Kainu, V., Hermansson, M., Hanninen, S., Hokynar, K. and Somerharju, P. Import of phosphatidylserine to and export of phosphatidylethanolamine molecular species from mitochondria. Biochim. Biophys. Acta, 1831, 429-437 (2013).
  • Kakela, R., Somerharju,P. and Tyynela,J. Analysis of phospholipid molecular species in brains from patients with infantile and juvenile neuronal-ceroid lipofuscinosis using liquid chromatography-electrospray ionization mass spectrometry. J. Neurochem., 84, 1051-1065 (2003).
  • Kamido, H., Eguchi,H., Ikeda,H., Imaizumi,T., Yamana,K., Hartvigsen,K., Ravandi,A. and Kuksis,A. Core aldehydes of alkyl glycerophosphocholines in atheroma induce platelet aggregation and inhibit endothelium-dependent arterial relaxation. J. Lipid Res., 43, 158-166 (2002).
  • Kamido, H., Kuksis,A., Marai,L. and Myher,J.J. Lipid ester-bound aldehydes among copper-catalyzed peroxidation products of human plasma-lipoproteins. J. Lipid Res., 36, 1876-1886 (1995).
  • Karlsson, A.A., Arnoldsson,K.C., Westerdahl,G. and Odham,G. Common molecular species of glucosyl ceramides, lactosyl ceramides and sphingomyelins in bovine milk determined by high-performance liquid chromatography-mass spectrometry. Milchwissenschaft, 52, 554-559 (1997).
  • Karlsson, A.A., Michelsen,P. and Odham,G. Molecular species of sphingomyelin: Determination by high-performance liquid chromatography mass spectrometry with electrospray and high-performance liquid chromatography tandem mass spectrometry with atmospheric pressure chemical ionization. J. Mass Spectrom., 33, 1192-1198 (1998).
  • Kaufmann, P. and Olsson,N.U. Molecular species separation of polar lipids, utilizing a multivariate liquid chromatography optimization strategy. In: 'Contemporary Lipid Analysis, 2nd Symposium Proceedings', pp. 72-83 (edited by N.U. Olsson & B.G. Herslof, LipidTeknik, Stockholm) (1992).
  • Kaufmann, P. and Olsson,N.U. Determination of intact molecular species of bovine milk. 1,2-Diacyl-sn-glycero-3-phosphocholine and 1,2-diacyl-sn-glycero-3-phosphoethanolanine by reversed-phase HPLC, a multivariate optimization. Chromatographia, 35, 517-523 (1993).
  • Kayganich,K.A. and Murphy,R.C. Molecular species analysis of arachidonate containing glycerophosphocholines by tandem-mass spectrometry. J. Am. Soc. Mass Spectrom., 2, 45-54 (1991).
  • Kennerley,D.A. Quantitative analysis of water-soluble products of cell-associated phospholipase C- and phospholipase D-catalyzed hydrolysis of phosphatidylcholine. Methods Enzymol., 197, 191-197 (1991).
  • Kerwin,J.L., Tuininga,A.R. and Ericsson,L.H. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray MS. J. Lipid Res., 35, 1102-1114 (1994).
  • Khaselev,N. and Murphy,R.C. Structural characterization of oxidized phospholipid products derived from arachidonate-containing plasmenyl glycerophosphocholine. J. Lipid Res., 41, 564-572 (2000).
  • Kim,H.-Y. and Salem,N. Liquid chromatography mass-spectrometry of lipids. Prog. Lipid Res., 32, 221-245 (1993).
  • Kim,H.-Y. and Salem,N. Separation of lipid classes by solid phase extraction. J. Lipid Res., 31, 2285-2289 (1990).
  • Kim,H.-Y., Wang,T.-C.L. and Ma,Y.-C. Characterization of polyunsaturated phospholipid remodeling in mammalian cells by high-performance liquid chromatography electrospray-ionization mass spectrometry. Biol. Biotechn. Applications of ESI-MS. ACS Symposium Series, 619, 267-280 (1996).
  • Kim,H.-Y., Wang,T.-C.L. and Ma,Y.-C. Liquid-chromatography mass spectrometry of phospholipids using electrospray ionization. Anal. Chem., 66, 3977-3982 (1994).
  • Kim,J., Minkler,P.E., Salomon,R.G., Anderson,V.E. and Hoppel,C.L. Cardiolipin: characterization of distinct oxidized molecular species. J. Lipid Res., 52, 125-135 (2011).
  • Kitsos,M., Gandini,C., Massolimi,G., De Lorenzi,E. and Caccialanza,G. HPLC post-column derivatization with fluorescence detection to study the influence of ambroxol on dipalmitoylphosphatidylcholine levels in rabbit eustachian tube washings. J. Chromatogr. A, 553, 1-6 (1991).
  • Klein,B.H. and Dudenhausen,J.W. Simultaneous determination of phospholipid classes and the major molecular species of lecithin in human amniotic fluid by HPLC. J. Liqu. Chromatogr., 17, 981-998 (1994).
  • Korytowski,W., Niziolek,M. and Girotti,A.W. Separation and quantitation of phospholipid hydroperoxide families using high-performance liquid chromatography with mercury cathode electrochemical detection. Anal. Biochem., 343, 136-142 (2005).
  • Kraffe,E., Soudant,P., Marty,Y. and Kervarec,N. Docosahexaenoic acid- and eicosapentaenoic acid-enriched cardiolipin in the manila clam Ruditapes philippinarum. Lipids, 40, 619-625 (2005).
  • Kuksis,A. Mass spectrometry of complex lipids. In: 'Lipid Analysis in Oils and Fats', pp. 181-249 (edited by R.J. Hamilton, Blackie, London) (1998).
  • Kuksis,A. Lipids. In: J. Chromatogr. Library. Vol. 51. Part B., pp. B171-B227 (edited by E. Heftmann, Elsevier, Amsterdam) (1992).
  • Kuksis,A. Inositol Phospholipid Metabolism and Phosphatidyl Inositol Kinases (Laboratory Techniques in Biochemistry and Molecular Biology Vol. 30) (Elsevier, Amsterdam) (2003).
  • Kuksis,A. and Myher,J.J. Mass analysis of molecular species of diradylglycerols. In: 'Methods in Inositide Research', pp. 187-216 (edited by R.F. Irvine, Raven Press, New York) (1990).
  • Kuksis,A., Marai,L. and Myher,J.J. Plasma lipid profiling by liquid chromatography with chloride-attachment MS. Lipids, 26, 240-246 (1991).
  • Kuksis,A., Marai,L., Myher,J.J., Itabashi,Y. and Pind,S. Qualitative and quantitative analysis of molecular species of glycerolipids by HPLC. In: Analyses of Fats, Oils and Lipoproteins, pp. 214-232 (ed. E.G. Perkins, American Oil Chemists' Society, Champaign, U.S.A.) (1991).
  • Kuypers,F.A., Butikofer,P. and Shackleton,C.H. Application of liquid chromatography-thermospray MS in the analysis of glycerophospholipid molecular species. J. Chromatogr. B, 562, 191-206 (1991).
  • Lang,C.J., Postle,A.D., Orgeig,S., Possmayer,F., Bernhard,W., Panda,A.K., Jurgens,K.D., Milsom,W.K., Nag,K. and Daniels,C.B. Dipalmitoylphosphatidylcholine is not the major surfactant phospholipid species in all mammals. Am. J. Physiol., 289, R1426-R1439 (2005).
  • Larsen,A. and Molander,P. Temperature optimization for improved determination of phosphatidylserine species by micro liquid chromatography with electrospray tandem mass spectrometric detection. J. Sep. Sci., 27, 297-303 (2004).
  • Larsen,A., Mokastet,E., Lundanes,E. and Hvattum,E. Separation and identification of phosphatidylserine molecular species using reversed-phase high-performance liquid chromatography with evaporative light scattering and mass spectrometric detection. J. Chromatogr. B, 774, 115-120 (2002).
  • Lavarias,S., Dreon,M.S., Pollero,R.J. and Heras,H. Changes in phosphatidylcholine molecular species in the shrimp Macrobrachium borellii in response to a water-soluble fraction of petroleum. Lipids, 40, 487-494 (2005).
  • Le Grandois,J., Marchioni,E., Zhao,M.J., Giuffrida,F., Ennahar,S. and Bindler,F. Investigation of natural phosphatidylcholine sources: separation and identification by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS2) of molecular species. J. Agric. Food Chem., 57, 6014-6020 (2009).
  • Lee,C. and Hajra,A.K. Molecular species of diacylglycerols and phosphoglycerides and the postmortem changes in the molecular species of diacylglycerols in rat brain. J. Neurochem., 56, 370-379 (1991).
  • Lee,C., Fisher,S.K., Agranoff,B.W. and Hajra,A.K. Quantitative analysis of molecular species of diacylglycerol and phosphatidate formed upon muscarinic receptor activation of human SK-N-SH neuroblastoma cells. J. Biol. Chem., 266, 22837-22846 (1991).
  • Lehmann,W.D., Koester,M., Erben,G. and Keppler,D. Characterization and quantification of rat bile phosphatidylcholine by electrospray-tandem mass spectrometry. Anal. Biochem., 246, 102-110 (1997).
  • Leray,C., Sarlieve,L.L., Dreyfus,H., Massarelli,R., Binaglia,L. and Freysz,L. Molecular species of choline and ethanolamine glycerophospholipids in rat brain myelin during development. Lipids, 29, 77-81 (1994).
  • Lesnefsky,E.J., Minkler,P. and Hoppel,C.L. Enhanced modification of cardiolipin during ischemia in the aged heart. J. Mol. Cell. Cardiol., 46, 1008-1015 (2009).
  • Lester,R.L., Wells,G.B., Oxford,G. and Dickson,R.C. Mutant strains of Saccharomyces cerevisiae lacking sphingolipids synthesise novel inositol glycerophospholipids that mimic sphingolipid structures. J. Biol. Chem., 268, 845-856 (1993).
  • Li,C. and Yergey,J.A. Continuous flow liquid secondary ion mass spectrometric characterization of phospholipid molecular species. J. Mass Spectrom., 32, 314-322 (1997).
  • Li,C., McClory,A., Wong,E. and Yergey,J.A. Mass spectrometric analysis of arachidonyl-containing phospholipids in human U937 cells. J. Mass Spectrom., 34, 521-536 (1999).
  • Li,F., Chen,H.M. and Anderson,R.E. Biosynthesis of docosahexaenoate-containing glycerolipid molecular species in the retina. J. Mol. Neurosci., 16, 205-214 (2001).
  • Li,H.Y., Yan,X.J., Xu,J.L. and Zhou,C.X. Precise identification of photosynthetic glycerolipids in microalga Tetraselmis chuii by UPLC-ESI-Q-TOF-MS. Sci. China. C Life Sci., 51, 1101-1107 (2008).
  • Lima,L.R. and Synovec,R.E. Isocratic mixed-mode liquid chromatographic separation of phospholipids with octadecylsilane-silica stationary phases. Talanta, 41, 581-588 (1994).
  • Lin,D.S., Connor,W.E., Wolf,D.P., Neuringer,M. and Hachey,D.L. Unique lipids of primate spermatozoa: demosterol and docosahexaenoic acid. J. Lipid Res., 34, 491-499 (1993).
  • Lin,J.T. and McKeon,T.A. Relative retention times of molecular species of acylglycerols, phosphatidylcholines, and phosphatidylethanolamines containing ricinoleate in reversed-phase HPLC. J. Liqu. Chromatogr. Rel. Technol., 26, 1051-1058 (2003).
  • Lin,J.T. and McKeon,T.A. Separation of intact phosphatidylcholine molecular species by high performance liquid chromatography. J. Liqu. Chromatogr. Rel. Technol., 23, 813-829 (2000).
  • Lin,J.T., Chen,J.M., Chen,P., Liao,L.P. and McKeon,T.A. Molecular species of PC and PE formed during castor oil biosynthesis. Lipids, 37, 991-995 (2002).
  • Lin,J.T., Lew,K.M., Chen,J.M. and McKeon,T.A. Separation of the molecular species of intact phosphatidylethanolamines and their N-monomethyl and N,N-dimethyl derivatives by high-performance liquid chromatography on a C-8 column. J. Chromatogr. A, 891, 349-353 (2000).
  • Lin,J.T., McKeon,T.A., Woodruff,C.L. and Singleton,J.A. Separation of synthetic phosphatidylcholine molecular species by high-performance liquid chromatography on a C-8 column. J. Chromatogr. A, 824, 169-174 (1998).
  • Lisa,M., Cifkova,E. and Holcapek,M. Lipidomic profiling of biological tissues using off-line two-dimensional high-performance liquid chromatography mass spectrometry. J. Chromatogr. A, 1218, 5146-5156 (2011).
  • Lu,X.Q., Liu,Q., Wang,Z.H. and Hong,X.K. Molecular species analysis of phosphatidylcholine by reversed-phase ion-pair high-performance liquid chromatography. J. Chromatogr. Sci., 41, 267-270 (2003).
  • Luquain, C., Dolmazon,R., Enderlin,J.M., Laugier,G., Lagarde,M. and Pageaux,J.F. Bis(monoacylglycerol) phosphate in rat uterine stromal cells: structural characterization and specific esterification of docosahexaenoic acid. Biochem. J., 351, 795-804 (2000).
  • Lytle, C.A., Gan,Y.D. and White,D.C. Electrospray ionization/mass spectrometry compatible reversed-phase separation of phospholipids: piperidine as a post column modifier for negative ion detection. J. Microb. Methods, 41, 227-234 (2000).
  • Ma, Y.-C. and Kim,H.-Y. Development of the on-line HPLC/thermospray MS method for the analysis of phospholipid molecular species in brain. Anal. Biochem., 226, 293-301 (1995).
  • Maciel, E., da Silva, R.N., Simoes, C., Melo, T., Ferreira, R., Domingues, P. and Domingues, M.R.M. Liquid chromatography-tandem mass spectrometry of phosphatidylserine advanced glycated end products. Chem. Phys. Lipids, 174, 1-7 (2013).
  • Maciel, E., Domingues,P. and Domingues,M.R.M. Liquid chromatography/tandem mass spectrometry analysis of long-chain oxidation products of cardiolipin induced by the hydroxyl radical. Rapid Commun. Mass Spectrom., 25, 316-326 (2011).
  • Malavolta, M., Bocci,F., Boselli,E. and Frega,N.G. Normal phase liquid chromatography-electrospray ionization tandem mass spectrometry analysis of phospholipid molecular species in blood mononuclear cells: application to cystic fibrosis. J. Chromatogr. B, 810, 173-186 (2004).
  • Mano, Y., Nishiyama,S., Kojima,M., Ohnishi,M. and Ito,S. Analysis of the molecular species of glycerolipids from rye grains by reversed-phase high-performance liquid chromatography. Cereal Chem., 68, 280-284 (1991).
  • Marini, D. HPLC of lipids. In: 'Food Analysis by HPLC', (edited by L.M.L. Nollet, Marcel Dekker, New York), pp. 169-240 (1992).
  • Masood, M.A., Rao, R.P., Acharya, J.K., Blonder, J. and Veenstra, T.D. Quantitation of multiple sphingolipid classes using normal and reversed-phase LC-ESI-MS/MS: comparative profiling of two cell lines. Lipids, 47, 209-226 (2012).
  • Masrar, H., Bereziat,G. and Colard,O. Very high proportion of disaturated molecular species in rat platelet diacyl-glycerophosphocholine: involvement of CoA dependent transacylation reactions. Arch. Biochem. Biophys., 281, 116-123 (1990).
  • Mazzella, N., Molinet,J., Syakti,A.D., Dodi,A., Doumenq,P., Artaud,J. and Bertrand,J.C. Bacterial phospholipid molecular species analysis by ion-pair reversed-phase HPLC/ESI/MS. J. Lipid Res., 45, 1355-1363 (2004).
  • McHowat, J., Jones,J.H. and Creer,M.H. Gradient elution reversed-phase chromatographic isolation of individual glycerophospholipid molecular species. J. Chromatogr. B, 702, 21-32 (1997).
  • McHowat, J., Jones,J.H. and Creer,M.H. Quantitation of individual phospholipid molecular species by UV absorption measurements. J. Lipid Res., 37, 2450-2460 (1996).
  • Menguy, L., Christon,R., van Dorsselaer,A. and Leger,C.L. Apparent relative retention of the phosphatidylethanolamine molecular species 18:0-20:5(n-3), 16:0-22:6(n-3) and the sum 16:0-20:4(n-6) + 16:0-20:3(n-9) in the liver microsomes of pig on an EFA deficient diet. Biochim. Biophys. Acta, 1123, 41-50 (1992).
  • Merlin,J.F., Gresti,J., Bellenger,S. and Narce,M. Fast high performance liquid chromatography analysis in lipidomics: Separation of radiolabelled fatty acids and phosphatidylcholine molecular species using a monolithic C-18 silica column. Anal. Chim. Acta, 565, 163-167 (2006).
  • Merrill,A.H., Stokes,T.H., Momin,A., Park,H., Portz,B.J., Kelly,S., Wang,E., Sullards,M.C. and Wang,M.D. Sphingolipidomics: a valuable tool for understanding the roles of sphingolipids in biology and disease. J. Lipid Res., 50, S97-S102 (2009).
  • Merrill,A.H., Sullards,M.C., Allegood,J.C., Kelly,S. and Wang,E. Sphingolipidomics: High-throughput, structure-specific, and quantitative analysis of sphingolipids by liquid chromatography tandem mass spectrometry. Methods, 36, 207-224 (2005).
  • Miller,N.J., Postle,A.D., Orgeig,S., Koster,G. and Daniels,C.B. The composition of pulmonary surfactant from diving mammals. Resp. Physiol. Neurobiol., 152, 152-168 (2006).
  • Mills,P.C., Chen,Y., Hills,Y.C. and Hills,B.A. Comparison of surfactant lipids between pleural and pulmonary lining fluids. Pulmonary Pharmacol. Ther., 19, 292-296 (2006).
  • Milne,G.L. and Porter,N.A. Separation and identification of phospholipid peroxidation products. Lipids, 36, 1265-1275 (2001).
  • Minkler,P.E. and Hoppel,C.L. Separation and characterization of cardiolipin molecular species by reverse-phase ion pair high-performance liquid chromatography-mass spectrometry. J. Lipid Res., 51, 856-865 (2010).
  • Miwa,H., Yamamoto,M., Futata,T., Kan,K. and Asano,T. TLC and HPLC for the assay of fatty acid compositions of individual phospholipids in platelets from non-insulin-dependent Diabetes mellitus patients: effect of eicosapentaenoic acid ethyl ester administration. J. Chromatogr. B, 677, 217-223 (1996).
  • Moreau,R.A,. Young,D.H., Danis,P.O., Powell,M.J., Quinn,C.J,. Beshah,K., Slawecki,R.A. and Dilliplane,R.L. Identification of ceramide phosphorylethanolamine in oomycete plant pathogens: Pythium ultimum, Phytophthora infestans, and Phytophthora capsici. Lipids, 33, 307-317 (1998).
  • Mounts,T.L., Abidi,S.L. and Rennick,K.A. HPLC analysis of phospholipids by evaporative laser light-scattering detector. J. Am. Oil Chem. Soc., 69, 438-442 (1992).
  • Moya-Falcon,C., Hvattum,E., Tran,T.N., Thomassen,M.S., Skorve,J. and Ruyter,B. Phospholipid molecular species, beta-oxidation, desaturation and elongation of fatty acids in Atlantic salmon hepatocytes: Effects of temperature and 3-thia fatty acids. Comp. Biochem. Physiol. B, 145, 68-80 (2006).
  • Mullertz,A., Schmedes,A. and Holmer,G., Separation and detection of phospholipid hydroperoxides in the low nanomolar range by a HPLC/iron thiocyanate assay. Lipids, 25, 415-418 (1990).
  • Murphy,R.C. Mass Spectrometry of Lipids (Handbook of Lipid Research, Vol. 7) (Plenum Press, N.Y.) (1993).
  • Murphy,R.C., Khaselev,N., Nakamura,T. and Hall,L.M. Oxidation of glycerophospholipids from biological membranes by reactive oxygen species: liquid chromatographic-mass spectrometric analysis of eicosanoid products. J. Chromatogr. B, 731, 59-71 (1999).
  • Murthy,M., Hamilton,J., Greiner,R.S., Moriguchi,T., Salem,N. and Kim,H.Y. Differential effects of n-3 fatty acid deficiency on phospholipid molecular species composition in the rat hippocampus. J. Lipid Res., 43, 611-617 (2002).
  • Nakagawa,Y. Application of paired-ion HPLC to the separation of molecular species of phosphatidylinositol. Lipids, 28, 1033-1035 (1993).
  • Nakanishi,H., Iida,Y., Shimizu,T. and Taguchi,R. Separation and quantification of sn-1 and sn-2 fatty acid positional isomers in phosphatidylcholine by RPLC-ESIMS/MS. J. Biochem. (Tokyo), 147, 245-256 (2010).
  • Nalesso,A., Viel,G., Cecchetto,G., Mioni,D., Pessa,G., Favretto,D. and Ferrara,S.D. Quantitative profiling of phosphatidylethanol molecular species in human blood by liquid chromatography high resolution mass spectrometry. J. Chromatogr. A, 1218, 8423-8431 (2011)
  • Naru,E., Takanezawa,Y., Kobayashi,M., Misaki,Y., Kaji,K. and Arakane,K. Increased levels of a particular phosphatidylcholine species in senescent human dermal fibroblasts in vitro. Human Cell, 21, 70-78 (2008).
  • Narvaez-Rivas,M., Gallardo,E., Rios,J.J. and Leon-Camacho,M. A new high-performance liquid chromatographic method with evaporative light scattering detector for the analysis of phospholipids. Application to Iberian pig subcutaneous fat. J. Chromatogr. A, 1218, 3453-3458 (2011).
  • Nibbering,C.P. and Carey,M.C. Sphingomyelins of rat liver: Biliary enrichment with molecular species containing 16:0 fatty acids as compared to canalicular-enriched plasma membranes. J. Membrane Biol., 167, 165-171 (1999).
  • Nichols,D.S., Miller,M.R., Davies,N.W., Goodchild,A., Raftery,M. and Cavicchioli,R. Cold adaptation in the antarctic archaeon Methanococcoides burtonii involves membrane lipid unsaturation. J. Bact., 186, 8508-8515 (2004).
  • Nie,H., Liu,R., Yang,Y., Bai,Y., Guan,Y., Qian,D., Wang,T. and Huwei Liu,H. Lipid profiling of rat peritoneal surface layers by online normal- and reversed-phase 2D LC QToF-MS. J. Lipid Res., 51, 2833-2844 (2010).
  • Nikolova-Damyanova,B. Silver ion chromatography and lipids. In: 'Advances in Lipid Methodology - One' (edited by W.W. Christie, Oily Press, Ayr), pp. 181-237 (1992).
  • Nilsson,R. and Liljenberg,C. Separation and identification of plant glycerolipid molecular species by particle beam-high-performance liquid chromatography-mass spectrometry. Phytochem. Anal., 7, 228-232 (1996).
  • Nishihira,J., Ishibashi,T., Sawamura,Y. and Hosokawa,M. Molecular species of phospholipids of interleukin-2-dependent murine cytotoxic T-lymphocytes. Biochem. Mol. Biol. Int., 35, 1017-1027 (1995).
  • Norman,H.A., Pillai,P. and St John,J.B. In vitro desaturation of monogalactosyldiacylglycerol and phosphatidylcholine molecular species by chloroplast homogenates. Phytochemistry, 30, 2217-2222 (1991).
  • Nunez,A. and Piazza,G.J. Analysis of lipoxygenase kinetics by high-performance liquid chromatography with a polymer column. Lipids, 30, 129-133 (1995).
  • O'Donnell,V.B. Mass spectrometry analysis of oxidized phosphatidylcholine and phosphatidylethanolamine. Biochim. Biophys. Acta, 1811, 818-826 (2011)
  • Ogiso,H. and Taguchi,R. Reversed-phase LC/MS method for polyphosphoinositide analyses: changes in molecular species levels during epidermal growth factor activation in A431 cells. Anal. Chem., 80, 9226-9232 (2008).
  • Okabe,H., Itabashi,Y. and Ota,T. Determination of molecular species of phosphatidylcholines as 2-anthrylurethanes by reversed-phase hplc with fluorescence detection and on-line electrospray ionization mass spectrometry, J. Japan Oil Chem. Soc. (Yukagaku), 48, 559-567 (1999).
  • Olsson,N.U. and Salem,N. Molecular species analysis of phospholipids. J. Chromatogr. B, 692, 245-256 (1997).
  • Olsson,N.U., Kaufmann,P. and Kroon,C.-G. HPLC separation of molecular species of intact sphingomyelin, utilizing multivariate design and optimization. Chromatographia, 34, 529-534 (1992).
  • Oursel,D., Loutelier-Bourhis,C., Orange,N., Chevalier,S., Norris,V. and Lange,C.M. Lipid composition of membranes of Escherichia coli by liquid chromatography/tandem mass spectrometry using negative electrospray ionization. Rapid Commun. Mass Spectrom., 21, 1721-1728 (2007).
  • Ousley,A.H. and Morell,P. Individual molecular species of phosphatidylcholine and phosphatidylethanolamine in myelin turn over at different rates. J. Biol. Chem., 267, 10362-10369 (1992).
  • Pacetti,D., Boselli,E., Lucci,P. and Frega,N.G. Simultaneous analysis of glycolipids and phospholids molecular species in avocado (Persea americana Mill) fruit. J. Chromatogr. A, 1150, 241-251 (2007).
  • Pacetti,D., Malavolta,M., Bocci,F., Boselli,E. and Frega,N.G. High-performance liquid chromatography/electrospray ionization ion-trap tandem mass spectrometric analysis and quantification of phosphatidylcholine molecular species in the serum of cystic fibrosis subjects supplemented with docosahexaenoic acid. Rapid Commun. Mass Spectrom., 18, 2395-2400 (2004).
  • Parinandi,N.L., Weis,B.K., Natarajan,V. and Schmid,H.H.O. Peroxidative modification of phospholipids in myocardial membranes. Arch. Biochem. Biophys., 280, 45-52 (1990).
  • Patton,G.M. and Robins,S.J. Extraction of phospholipids and analysis of phospholipid molecular species. Methods Enzymol., 187, 195-215 (1990).
  • Patton,G.M., Fasulo,J.M. and Robins,S.J. Analysis of lipids by HPLC. 1. J. Nutr. Biochem., 1, 493-500 (1990).
  • Patton,G.M., Fasulo,J.M. and Robins,S.J. Hepatic phosphatidylcholines - evidence for synthesis in the rat by extensive reutilization of endogenous acylglycerides. J. Lipid Res., 35, 1211-1221 (1994).
  • Pchelkin,V.P. Quantitative evaluation of the results of reversed-phase fractionation of natural phosphatidylcholines and products of their hydrolysis. J. Anal. Chem., 52, 102-109 (1997).
  • Pchelkin,V.P. and Vereshchagin,A.G. Separation of polar lipid classes into their molecular species by planar and column liquid chromatography. Adv. Chromatogr., 32, 87-129 (1992).
  • Peter-Katalinic,J. and Fischer,W. alpha-D-Glucopyranosyl-, D-alanyl-and L-lysylcardiolipin from gram-positive bacteria: analysis by fast atom bombardment mass spectrometry. J. Lipid Res., 39, 2286-229 (1998).
  • Petit,T.R. and Wakelam,M.J.O. Bombesin stimulates distinct time-dependent changes in the sn-1,2-diradylglycerol molecular species profile from Swiss 3T3 fibroblasts as analysed by 3,5-dinitrobenzoyl derivatization and HPLC separation. Biochem. J., 289, 487-495 (1993).
  • Postle,A.D. Phospholipid lipidomics in health and disease. Eur. J. Lipid Sci. Technol., 111, 2-13 (2009).
  • Postle,A.D. and Hunt,A.N. Dynamic lipidomics with stable isotope labelling. J. Chromatogr. B, 877, 2716-2721 (2009).
  • Postle,A.D., Gonzales,L.W., Bernhard,W., Clark,G.T., Godinez,M.H., Godinez,R.I. and Ballard,P.L. Lipidomics of cellular and secreted phospholipids from differentiated human fetal type II alveolar epithelial cells. J. Lipid Res., 47, 1322-1331 (2006).
  • Previati,M., Bertolaso,L., Tramarin,M., Bertagnolo,V. and Capitani,S. Low nanogram range quantitation of diglycerides and ceramide by HPLC. Anal. Biochem., 233, 108-114 (1996).
  • Prieto,J.A., Ebri,A. and Collar,C. Composition and distribution of individual molecular species of wheat flour phospholipids. J. Chromatogr. Sci., 31, 55-60 (1993).
  • Pruzanski,W., Stefanski,E., de Beer,F.C., de Beer,M.C., Ravandi,A. and Kuksis,A. Comparative analysis of lipid composition of normal and acute-phase high density lipoproteins. J. Lipid Res., 41, 1035-1047 (2000).
  • Qiu,D.F., Games,M.P.L., Xiao,X.Y., Games,D.E and Walton,T.J. Application of high-performance liquid chromatography electrospray mass spectrometry for the characterization of membrane lipids in the haloalkaliphilic archaebacterium Natronobacterium magadii. Rapid Commun. Mass Spectrom., 12, 939-946 (1998).
  • Qiu,D.F., Games,M.P.L., Xiao,X.Y., Games,D.E. and Walton,T.J. Characterisation of membrane phospholipids and glycolipids from a halophilic archaebacterium by high-performance liquid chromatography/electrospray mass spectrometry. Rapid Commun. Mass Spectrom., 14, 1586-1591 (2000).
  • Qiu,D.F., Xiao,X.Y., Walton,T.J., Games,M.P.L. and Games,D.E. High-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry of phospholipids in Natronobacterium magadii. Eur. Mass Spectrom., 5, 151-156 (1999).
  • Ramanadham, S., Bohrer,A., Gross,R.W. and Turk,J. Mass spectrometric characterization of arachidonate-containing plasmalogens in human pancreatic islets and in rat islet beta-cells and subcellular membranes. Biochemistry, 32, 13499-13509 (1993).
  • Ramanadham, S., Bohrer,A., Mueller,M., Jett,P., Gross,R.W. and Turk,J. Mass spectrometric identification and quantitation of arachidonate-containing phospholipids in pancreatic islets: prominence of plasmenylethanolamine molecular species. Biochemistry, 32, 5339-5351 (1993).
  • Ramanadham, S., Hsu,F.F., Bohrer,A., Nowatzke,W., Ma,Z.M. and Turk,J. Electrospray ionization mass spectrometric analyses of phospholipids from rat and human pancreatic islets and subcellular membranes: Comparison to other tissues and implications for membrane fusion in insulin exocytosis. Biochemistry, 37, 4553-4567 (1998).
  • Rastegar, A., Pelletier,A., Duportail,G., Freysz,L. and Leray,C. Sensitive analysis of phospholipid molecular species by HPLC using fluorescent naproxen derivatives of diacylglycerols. J. Chromatogr. A, 518, 157-165 (1990).
  • Ravandi, A., Kuksis,A., Myher,J.J. and Marai,L. Determination of lipid ester ozonides and core aldehydes by high-performance liquid-chromatography with on-line mass spectrometry. J. Biochem. Biophys. Methods, 30, 271-285 (1995).
  • Reis, A., Domingues,M.R.M., Amado,F.M.L., Ferrer-Correia,A.J.V. and Domingues,P. Separation of peroxidation products of diacyl-phosphatidylcholines by reversed-phase liquid chromatography-mass spectrometry. Biomed. Chromatogr., 19, 129-137 (2005).
  • Reis, A., Domingues,M.R.M., Amado,F.M.L., Ferrer-Correia,A.J. and Domingues,P. Radical peroxidation of palmitoyl-lineloyl-glycerophosphocholine liposomes: Identification of long-chain oxidised products by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B, 855, 186-199 (2007).
  • Retra, K., Bleijerveld,O.B., van Gesteil,R.A., Tielens,A.G.M., van Hellemond,J.J. and Brouwers,J.F. A simple and universal method for the separation and identification of phospholipid molecular species. Rapid Commun. Mass Spectrom., 22, 1853-1862 (2008).
  • Rezanka, T. and Mares,P. Preparative separation of sphingolipids and of individual molecular species by HPLC and their identification by GC-MS. J. Chromatogr. A, 509, 333-346 (1990).
  • Rezanka, T., Matoulkova, D., Kyselova, L. and Sigler, K. Identification of plasmalogen cardiolipins from Pectinatus by liquid chromatography-high resolution electrospray ionization tandem mass spectrometry. Lipids, 48, 1237-1251 (2013).
  • Rezanka, T., Siristova,L., Melzoch,K. and Sigler,K. Identification of (S)-11-cycloheptyl-4-methylundecanoic acid in acylphosphatidylglycerol from Alicyclobacillus acidoterrestris. Chem. Phys. Lipids, 159, 104-113 (2009).
  • Ritov, V.B., Menshikova,E.V. and Kelley,D.E. Analysis of cardiolipin in human muscle biopsy. J. Chromatogr. B, 831, 63-71 (2006).
  • Robertsson, G., Andersson,G. and Kaufmann,P. The use of an optimized RP-HPLC system as a molecular probe in QSPR studies of selected lipid classes. Chromatographia, 47, 643-648 (1998).
  • Rombaut, R. and Dewettinck,K. Edible oil and fat analysis by HPLC. Lipid Technology, 17, 280-283 (2005).
  • Sakamoto, A. and Novotny,M. Separation of phospholipid derivatives by microcolumn liquid chromatography. J. Microcolumn Sep., 8, 397-402 (1996).
  • Samhan-Arias, A.K., Ji, J., Demidova, O.M., Sparvero, L.J., Feng, W., Tyurin, V., Tyurina, Y.Y., Epperly, M.W., Shvedova, A.A., Greenberger, J.S., Bayir, H., Kagan, V.E. and Amoscato, A.A. Oxidized phospholipids as biomarkers of tissue and cell damage with a focus on cardiolipin. Biochim. Biophys. Acta, 1818, 2413-2423 (2012).
  • Sato, Y., Nakamura,T., Aoshima,K. and Oda,Y. Quantitative and wide-ranging profiling of phospholipids in human plasma by two-dimensional liquid chromatography/mass spectrometry. Anal. Chem., 82, 9858-9864 (2010).
  • Schlame,M. and Beyer,K. Molecular species of mitochondrial cardiolipin: composition and biosynthesis of a unique tetra-acyl moiety. In: 'Plant Lipid Biochemistry, Structure and Utilization', pp. 17-19(edited by P.J. Quinn & J.L. Harwood, Portland Press, London) (1990).
  • Schlame,M. and Otten,D. Analysis of cardiolipin molecular species by HPLC of its derivative 1,3-bisphosphatidyl-2-benzoyl-sn-glycerol. Anal. Biochem., 195, 290-295 (1991).
  • Schlame,M., Beyer,K., Hayer-Hartl,M. and Klingenberg,M. Molecular species of cardiolipin in relation to other mitochondrial phospholipids. Is there an acyl specificity of the interaction between cardiolipin and the ADP/ATP carrier. Eur. J. Biochem., 199, 459-466 (1991).
  • Schlame,M., Brody,S. and Hostetter,K.Y. Mitochondrial cardiolipin in diverse eukaryotes. Comparison of biosynthetic reactions and molecular acyl species. Eur. J. Biochem., 212, 727-735 (1993).
  • Schlame,M., Horvath,L. and Vigh,L. Relationship between lipid saturation and lipid-protein interaction in liver mitochondria modified by catalytic hydrogenation with reference to cardiolipin molecular species. Biochem. J., 265, 79-85 (1990).
  • Schlame,M., Ren,M., Xu,Y., Greenberg,M.L. and Haller,I. Molecular symmetry in mitochondrial cardiolipins. Chem. Phys. Lipids, 138, 38-49 (2005).
  • Seenaiah,B. and Ellingson,J.S., High-performance liquid-chromatographic method for determination of the metabolism of polyunsaturated molecular-species of phosphatidylserine labeled in the polar group. J. Chromatogr. B, 660, 380-385 (1994).
  • Sestak,T.L., Subbaiah,P.V., Jaskowiak,N.T. and Bagdade,J.D. A HPLC procedure for the determination of disaturated phosphatidylcholine in human plasma. Anal. Biochem., 191, 156-159 (1990).
  • Sewell,P.A. High-performance liquid chromatography. In: 'Lipid Analysis. A Practical Approach' (edited by R.J.Hamilton & S. Hamilton, IRL Press, Oxford), pp. 153-203 (1992).
  • Shan,L., Jaffe,K., Li,S. and Davis,L. Quantitative determination of lysophosphatidic acid by LC/ESI/MS/MS employing a reversed phase HPLC column. J. Chromatography B, 864, 22-28 (2008).
  • Shansky,R.E. and Kane,R.E. Separation of soy lecithin using gel permeation chromatography. J. Chromatogr. A, 589, 165-170 (1992).
  • Shui,G., Bendt,A.K., Pethe,K., Dick,T. and Wenk,M.R. Sensitive profiling of chemically diverse bioactive lipids. J. Lipid Res., 48, 1976-1984 (2007).
  • Shukla,V.K.S. Application of modern analytical techniques for evaluation of lipid structures. J. Dispersion Sci. Technol., 10, 581-616 (1990).
  • Silvestro,L., Dacol,R., Scappaticci,E., Libertucci,D., Biancone,L. and Camussi,G. Development of a HPLC-MS technique, with an ionspray interface, for the determination of platelet-activating factor (PAF) and lyso-PAF in biological samples. J. Chromatogr. A, 647, 261-269 (1993).
  • Singleton,J.A., Ruan,M., Sanford,J.H., Haney,C.A. and Stikeleather,L.F. Separation and characterization of peanut phospholipid molecular species using high-performance liquid chromatography and fast atom bombardment mass spectrometry. J. Am. Oil Chem. Soc., 76, 49-56 (1999).
  • Smith,P.B.W., Snyder,A.P. and Harden,C.S. Characterization of bacterial phospholipids by electrospray-ionization tandem mass spectrometry. Anal. Chem., 67, 1824-1830 (1995).
  • Spickett,C.M., Rennie,N., Winter,H., Zambonin,L., Landi,L., Jerlich,A., Schaur,R.J. and Pitt,A.R. Detection of phospholipid oxidation in oxidatively stressed cells by reversed-phase HPLC coupled with positive-ionization electroscopy MS Biochem. J., 355, 449-457 (2001).
  • Stinson,A.M., Wiegand,R.D. and Anderson,R.E. Recycling of docosahexaenoic acid in rat retinas during n-3 fatty acid deficiency. J. Lipid Res., 32, 2009-2017 (1991).
  • Subbanagounder,G., Deng,Y.J., Borromeo,C., Dooley,A.N., Beliner,J.A. and Salomon,R.G. Hydroxy alkenal phospholipids regulate inflammatory functions of endothelial cells. Vascular Pharm., 38, 201-209 (2002).
  • Subbanagounder,G., Wong,J.W., Lee,H., Faull,K.F., Miller,E., Witztum,J.L. and Berliner,J.A. Epoxyisoprostane and epoxycyclopentenone phospholipids regulate monocyte chemotactic protein-1 and interleukin-8 synthesis - Formation of these oxidized phospholipids in response to interleukin-1 beta. J. Biol. Chem., 277, 7271-7281 (2002).
  • Suchocka,Z., Gronostajska,D., Suchocki,P. and Pachecka,J. New HPLC method for separation of blood plasma phospholipids. J. Pharm. Biomed. Anal., 32, 859-865 (2003).
  • Sukenik,A., Yamaguchi,Y. and Livne,A. Alterations in lipid molecular species of the marine Eustigmatophyte Nannochloropsis sp. J. Phycol., 29, 620-626 (1993).
  • Sullards,M.C., Liu,Y., Chen,YF. and Merrill,A.H. Analysis of mammalian sphingolipids by liquid chromatography tandem mass spectrometry (LC-MS/MS) and tissue imaging mass spectrometry (TIMS). Biochim. Biophys. Acta, 1811, 838-853 (2011)
  • Sullards,M.C., Wang,E., Peng,Q. and Merrill,A.H. Metabolomic profiling of sphingolipids in human glioma cell lines by liquid chromatography tandem mass spectrometry. Cell. Mol. Biol., 49, 789-797 (2003).
  • Taguchi,R., Hayakawa,J., Takeuchi,Y. and Ishida,M. Two-dimensional analysis of phospholipids by capillary liquid chromatography/electrospray ionization mass spectrometry. J. Mass Spectrom., 35, 953-966 (2000).
  • Taguchi,R., Houjou,T., Nakanishi,H., Yamazaki,T., Ishida,M., Imagawa,M. and Shimizu,T. Focused lipidomics by tandem mass spectrometry. J. Chromatogr. B, 823, 26-36 (2005).
  • Takamura,H. and Kito,M. A highly sensitive method for quantitative analysis of phospholipid molecular species by HPLC. J. Biochem. (Tokyo), 109, 436-439 (1991).
  • Takamura,H., Kasai,H., Arita,H. and Kito,M. Phospholipid and molecular species in human umbilical artery and vein endothelial cells. J. Lipid Res., 31, 709-717 (1990).
  • Takatera,A., Takeuchi,A., Saiki,K., Morisawa,T., Yokoyama,N. and Matsuo,M. Quantification of lysophosphatidylcholines and phosphatidylcholines using liquid chromatography-tandem mass spectrometry in neonatal serum. J. Chromatogr. B, 838, 31-36 (2006).
  • Tang,C.H., Tsao,P.N., Chen,C.Y., Shiao,M.S., Wang,W.H. and Lin,C.Y. Glycerophosphocholine molecular species profiling in the biological tissue using UPLC/MS/MS. J. Chromatogr. B, 879, 2095-2106 (2011).
  • Taoka,Y., Ishioka,S. and Itabashi,Y. Molecular species analysis of phosphatidylglycerols in Escherichia coli by reversed-phase HPLC/ESI-MS. Bunseki Kagaku, 54, 155-160 (2005).
  • Therond,P., Couturier,M., Demelier,J.-F. and Lemonnier,F. Simultaneous determination of the main molecular species of soybean phosphatidylcholine or phosphatidylethanolamine and their corresponding hydroperoxides obtained by lipoxygenase treatment. Lipids, 28, 245-249 (1993).
  • Therond,P., Couturier,M., Demelier,J.-F. and Lemonnier,F. Hydroperoxides of erythrocyte phospholipid molecular species formed by lipoxygenase correlate with alpha-tocopherol levels. Lipids, 31, 703-708 (1996).
  • Thevenon,C., El Bawab,S., Chantegrel,B. and Lagarde,M. Highly sensitive measurement of lipid molecular species from biological samples by fluorimetric detection coupled to high-performance liquid chromatography. J. Chromatogr. B, 708, 39-47 (1998).
  • Tolonen,A., Lehto,T.M., Hannuksela,M.L., and Savolainen,M.J. A method for determination of phosphatidylethanol from high density lipoproteins by reversed-phase HPLC with TOF-MS detection. Anal. Biochem., 341, 83-88 (2005).
  • Tyurin,V.A., Tyurina,Y., Jung,M.Y., Tungekar,M.A., Wasserloos,K.J., Bayir,H., Greenberger,J.S., Kochanek,P.M., Shvedova,A.A., Pitt,B. and Kagan,V.E. Mass-spectrometric analysis of hydroperoxy- and hydroxy-derivatives of cardiolipin and phosphatidylserine in cells and tissues induced by pro-apoptotic and pro-inflammatory stimuli. J. Chromatogr. B, 877, 2863-2872 (2009).
  • Uchida,Y., Hara,M., Nishio,H., Sidransky,E., Inoue,S., Otsuka,F., Suzuki,A.., Elias,P.M., Holleran,W.M. and Hamanaka,S. Epidermal sphingomyelins are precursors for selected stratum corneum ceramides. J. Lipid Res., 41, 2071-2082 (2000).
  • Uemura,M. and Steponkus,P.L., A contrast of the plasma membrane lipid composition of oats and rye leaves in relation to freezing tolerance. Plant Physiol., 104, 479-496 (1994).
  • Uran,S., Larsen,A., Jacobsen,P.B. and Skotland,T. Analysis of phospholipid species in human blood using normal-phase liquid chromatography coupled with electrospray ionization ion-trap tandem mass spectrometry. J. Chromatogr. B, 758, 265-275 (2001).
  • Valeur,A., Olsson,N.U., Kaufmann,P., Wada,S., Kroon,C.-G., Westerdahl,G. and Odham,G. Quantification and comparison of some natural sphingomyelins by on-line HPLC/discharge assisted thermospray mass spectrometry. Biol. Mass Spectrom., 23, 313-319 (1994).
  • Valianpour,F., Wanders,R.J.A., Barth,P.G., Overmars,H. and Van Gennip,A.H. Quantitative and compositional study of cardiolipin in platelets by electrospray ionization mass spectrometry: Application for the identification of Barth syndrome patients. Clin. Chem., 48, 1390-1397 (2002).
  • Van der Meeren,P., Vanderdeelen,J. and Baert,L. Phospholipid analysis by HPLC. In: 'Food Analysis by HPLC', (edited by L.M.L. Nollet, Marcel Dekker, New York), pp. 241-258 (1992).
  • Van der Meeren,P., Vanderdeelen,J., Huyghebaert,G. and Baert,L. Partial resolution of molecular species during liquid chromatography of soybean phospholipids and effect on quantitation by light-scattering. Chromatographia, 34, 557-562 (1992).
  • Vecchini,A. Panagia,V. and Binaglia,L. Analysis of phospholipid molecular species. Mol. Cell. Biochem., 172, 129-136 (1997).
  • Vernooij,E.A.A.M., Brouwers,J.F.H.M., Kettenes-van den Bosch,J.J. and Crommelin,D.J.A. RP-HPLC/ESI MS determination of acyl chain positions in phospholipids. J. Sep. Sci., 25, 285-289 (2002).
  • Vernooij,E.A.A.M., Kettenes-van den Bosch,J.J. and Crommelin,D.J.A. Rapid determination of acyl chain position in egg phosphatidylcholine by high performance liquid chromatography electrospray mass spectrometry. Rapid Commun. Mass Spectrom., 12, 83-86 (1998).
  • Vesterqvist,O., Sargent,C.A., Taylor,S.C., Newburger,J., Tymiak,A.A., Grover,G.J. and Ogletree,M.L. Quantitation of lysophosphatidylcholine molecular species in rat cardiac tissue. Anal. Biochem., 204, 72-78 (1992).
  • Wagner,S. and Paltauf,F. Generation of glycerophospholipid molecular species in the yeast Saccharomyces cerevisiae - fatty acid pattern of phospholipid classes and selective acyl turnover at sn-1 and sn-2 positions. Yeast, 10, 1429-1437 (1994).
  • Wang,C., Kong,H.W., Guan,Y.F., Yang,J., Gu,J.R., Yang,S.L. and Xu,G.W. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal. Chem., 77, 4108-4116 (2005).
  • Wang,C., Xie,S.G., Yang,J., Yang,Q. and Xu,G.W. Structural identification of human blood phospholipids using liquid chromatography/quadrupole-linear ion trap mass spectrometry. Anal. Chim. Acta, 525, 1-10 (2004).
  • Wang,Y.H., Krull,I.S., Liu,C. and Orr,J.D. Derivatization of phospholipids. J. Chromatogr. B, 793, 3-14 (2003).
  • Wanjie,S.W., Welti,R., Moreau,R.A. and Chapman,K.D. Identification and quantification of glycerolipids in cotton fibers: Reconciliation with metabolic pathway predictions from DNA databases. Lipids, 40, 773-785 (2005).
  • Warne,T.R. and Robinson,M. A method for the quantitative analysis of molecular species of alkylacylglycerol and diacylglycerol. Lipids, 25, 748-752 (1990).
  • Wasan,K.M., Hayman,A.C. and Lopez-Berestein,G. Determination of dimyristoylphosphatidylglycerol in human serum by liquid-liquid-extraction and reversed-phase liquid-chromatography. J. Pharm. Biomed. Anal., 12, 851-854 (1994).
  • Wheelan,P., Zirrolli,J.A. and Clay,K.L. Analysis of glycerophosphocholine molecular species as derivatives of 7-[(chlorocarbonyl)-methoxy]-4-methylcoumarin. J. Lipid Res., 33, 111-121 (1992).
  • Wiley,M.G., Przetakiewicz,M., Takahashi,M. and Lowenstein,J.M. An extended method for separating and quantitating molecular species of phospholipids. Lipids, 27, 295-301 (1992).
  • Willmann,J., Mahlstedt,K., Leibfritz,D., Spraul,M. and Thiele,H. Characterization of sphingomyelins in lipid extracts using a HPLC-MS-offline-NMR method. Anal. Chem., 79, 4188-4191 (2007).
  • Winther,B., Hoem,N., Berge,K. and Reubsaet,L. Elucidation of phosphatidylcholine composition in krill oil extracted from Euphausia superba. Lipids, 46, 25-36 (2011).
  • Woldseth,B., Lund,A.M., Tverdal,S., Christensen,E. and Christophersen,B.O. Phospholipid molecular species with eicosapentaenoic acid (20:5(n-3)) are less stable than species with arachidonic-acid (20:4(n-6)) in isolated rat-liver cells. Scand. J. Clin. Lab. Invest., 55, 513-522 (1995).
  • Wormer, L., Lipp, J.S., Schroder, J.M. and Hinrichs, K.U. Application of two new LC-ESI-MS methods for improved detection of intact polar lipids (IPLs) in environmental samples. Org. Geochem., 59, 10-21 (2013).
  • Wu,Y., Wang,J.Z. and Sui,S.F. Characterization of phospholipids by electron impact, field desorption and liquid secondary ion mass spectrometry. J. Mass Spectrom., 32, 616-625 (1997).
  • Xu,Y., Kelley,R.I., Blanck,T.J.J. and Schlame,M. Remodeling of cardiolipin by phospholipid transacylation. J. Biol. Chem., 278, 51380-51385 (2003).
  • Xu,Y.N. and Eichenberger,W. Phosphatidylglycerol of Ectocarpus fasciculatus (Phaeophyceae). Analysis of molecular species by the use of dinitrobenzoyl diacylglycerol derivatives. Fett-Lipid, 101, 104-108 (1999).
  • Xu,Y.N. and Siegenthaler,P.A. Phosphatidylglycerol molecular species of photosynthetic membranes analyzed by high-performance liquid chromatography: theoretical considerations. Lipids, 31, 223-229 (1996).
  • Yang,S. Lu,S.H. and Yuan,Y.J. Lipidomic analysis reveals differential defense responses of Taxus cuspidata cells to two elicitors, methyl jasmonate and cerium (Ce4+). Biochim. Biophys. Acta, 1781, 123-134 (2008).
  • Yasuda,M. and Narita,S. Simultaneous determination of phospholipid hydroperoxides and cholesteryl ester hydroperoxides in human plasma by high-performance liquid chromatography with chemiluminescence detection. J. Chromatogr. B, 693, 211-217 (1997).
  • Yokoyama,Y., Hashimoto,M., Tsuchiya,M. and Yabe,R. Phospholipids in middle ear effusion and serum analysed by liquid ionization mass spectrometry. Int. J. Mass Spectrom. Ion Processes, 111, 263-272 (1991).
  • Yongmanitchai,W. and Ward,O.P. Positional distribution of fatty acids, and molecular species of polar lipids, in the diatom Phaeodactylum tricornutum J. Gen. Microbiol., 139, 465-472 (1993).
  • Zabrouskov,V. and Knowles,N.R. Changes in lipid molecular species and sterols of microsomal membranes during aging of potato (Solanum tuberosum L.) seed-tubers. Lipids, 37, 309-315 (2002).
  • Zabrouskov,V. and Knowles,N.R. Lipid metabolism during aging of high-alpha-linolenate-phenotype potato tubers. Arch. Biochem. Biophys., 402, 136-148 (2002).
  • Zhai,D.M. and Reilly,P.J. Effect of FA chain length on normal- and reversed-phase HPLC of phospholipids. J. Am. Oil Chem. Soc., 79, 1187-1190 (2002).
  • Zhao,S.M., Jia,L.W., Gao,P., Li,Q.R., Lu,X., Li,J.S. and Xu,G.W. Study on the effect of eicosapentaenoic acid on phospholipids composition in membrane microdomains of tight junctions of epithelial cells by liquid chromatography/electrospray mass spectrometry. J. Pharm. Biomed. Anal., 47, 343-350 (2008).
  • Zhu,X. and Eichberg,J. Molecular species composition of glycerophospholipids in rat sciatic nerve and its alteration in streptozotocin-induced diabetes. Biochim. Biophys. Acta, 1168, 1-12 (1993).

 

 Updated: February 5, 2014